# Totally positive integers of small trace and extreme orders of abelian varieties over finite fields

Alexander Smith

29 June 2021

### Defining absolute trace

An algebraic integer  $\alpha$  is a complex root to a monic polynomial

$$P(z)=z^d+a_{d-1}z^{d-1}+\cdots+a_0$$

with  $a_0, \ldots, a_{d-1}$  rational integers. Assume that this polynomial is irreducible, and take  $\alpha_1 = \alpha, \ldots, \alpha_d$  to be its complex roots. We call  $\alpha$  totally positive if these roots are all positive real numbers. We define the *absolute trace* of  $\alpha$  by

$$\operatorname{a.tr}(\alpha) = \frac{1}{d}(\alpha_1 + \cdots + \alpha_d) = -\frac{a_{d-1}}{d}.$$

#### Question

How small can the absolute trace of a totally positive algebraic integer be?

Totally positive algebraic integers with small absolute trace

For the polynomial z - 1, we have

a.tr
$$(1) = \frac{1}{1}(1) = 1$$
.

This is the limit: suppose the integral irreducible degree d polynomial P has real positive roots  $\alpha_1, \ldots, \alpha_d$ . Then, by the AM-GM inequality,

$$\operatorname{a.tr}(lpha_1) = rac{1}{d}(lpha_1 + \dots + lpha_d) \ge (lpha_1 \dots lpha_d)^{1/d} = |P(0)|^{1/d}$$

Since P(0) is an integer, and since 0 is not a root of P, we can conclude that  $a.tr(\alpha_1) \ge 1$ .

#### Totally positive algebraic integers with small absolute trace

Some other examples:

 $\blacktriangleright$  A root  $\alpha$  of  $z^2 - 3z + 1 \approx (z - .3820)(z - 2.6180)$ has a.tr( $\alpha$ ) = 3/2.  $\blacktriangleright$  A root  $\alpha$  of  $z^{3}-5z^{2}+6z-1 \approx (z-.1981)(z-1.5550)(z-3.2470)$ has a.tr( $\alpha$ ) = 5/3.  $\blacktriangleright$  A root  $\alpha$  of  $z^4 - 7z^3 + 13z^2 - 7z + 1$  or of  $z^4 - 7z^3 + 14z^2 - 8z + 1$ has a.tr( $\alpha$ ) = 7/4.

### Best previous bound on absolute trace

Theorem (Liang-Wu, '11)

If  $\alpha$  is a totally positive algebraic integer, then it is either one of the examples we have already mentioned, or

a.tr( $\alpha$ )  $\geq$  1.79193.

On the other hand, for any odd prime q, the totally positive algebraic integer  $\alpha_q = 4\cos^2(\pi/q)$  satisfies a.tr $(\alpha_q) = 2 - 2/(q-1)$ , so there are infinitely many totally positive algebraic integers with absolute trace < 2.

The Schur–Siegel–Smyth trace problem

For a given  $\lambda$  in (0,2), show that there are finitely many totally positive algebraic integers with absolute trace at most  $\lambda$ .

Progress on the Schur–Siegel–Smyth trace problem

Theorem (S. '21)

If  $\alpha$  is a totally positive algebraic integer, then the inequality

 $\mathsf{a.tr}(\alpha) > \lambda$ 

holds for  $\lambda = 1.802$  with finitely many exceptions.

# Timeline for bounds on a.tr

| The bound $\lambda$ | Reference                |  |
|---------------------|--------------------------|--|
| 1.6487              | Schur (1918)             |  |
| 1.7336              | Siegel (1945)            |  |
| 1.7719              | Smyth (1984)             |  |
| 1.7783786           | McKee and Smyth (2004)   |  |
| 1.784109            | Aguirre and Peral (2008) |  |
| 1.78702             | Flammang (2009)          |  |
| 1.79193             | Liang and Wu (2011)      |  |
| 1.802               | S. (2021)                |  |

#### The resultant

Suppose *P* is a degree *d*-integer polynomial. We have already noted P(0) is an integer. Some similar examples include:

- P(-1) and P(2) are integers
- $3^d P(1/3)$  is an integer
- ▶ P(i)P(-i) is an integer

More generally, if  $Q(z) = b_e(z - \beta_1) \dots (z - \beta_e)$  is an integral polynomial, then the *resultant* 

$$\operatorname{res}(Q, P) = b_e^d P(\beta_1) \dots P(\beta_d)$$

is an integer.

# The Smyth approach to the Schur–Siegel–Smyth trace problem

Smyth pioneered an approach to the trace problem that just uses this fact about resultants; this is the only approach to the problem that has improved the bound since. These results fit in the following template:

#### Theorem

Take  $\lambda$ , N from any row of the table on the next slide. There is then an explicit list of N irreducible integer polynomials  $Q_1, \ldots, Q_N$  so that, if a given real polynomial

$$P(z) = (z - \alpha_1)(z - \alpha_2) \dots (z - \alpha_d)$$

has positive roots and satisfies  $|\operatorname{res}(Q_i, P)| \ge 1$  for all  $i \le N$ , then the roots must also satisfy

$$\frac{1}{d}(\alpha_1 + \dots + \alpha_d) > \lambda.$$

# The Smyth approach to the Schur–Siegel–Smyth trace problem

| The bound $\lambda$ | Polynomial count $N$ | Reference                        |
|---------------------|----------------------|----------------------------------|
| 1.0                 | 1                    | Folklore use of AM-GM            |
| 1.7719              | pprox 15             | Smyth (1984)                     |
| 1.7783786           | 18                   | McKee and Smyth (2004)           |
| 1.780022            | 24                   | Aguirre, Bilbao and Peral (2006) |
| 1.783622            | 28                   | Aguirre and Peral (2007)         |
| 1.784109            | 31                   | Aguirre and Peral (2008)         |
| 1.78702             | 35                   | Flammang (2009)                  |
| 1.78839             | 70                   | McKee (2011)                     |
| 1.79193             | 86                   | Liang and Wu (2011)              |

#### What can we use besides the resultant?

We can use the discriminant; the discriminant of the monic polynomial  $P(z) = (z - \alpha_1) \dots (z - \alpha_d)$  is defined by

$$\Delta(P) = \prod_{1 \le i < j \le d} (\alpha_i - \alpha_j)^2.$$

If P is an integer polynomial, this is an integer. If P is also squarefree, we have  $|\Delta(P)| \ge 1$ .

Discriminant information is not so useful in small degrees, but becomes increasingly useful as d increases.

#### Polynomials to measures

Given complex numbers  $\alpha_1, \ldots, \alpha_d$ , we associate the polynomial  $P(z) = (z - \alpha_1) \ldots (z - \alpha_d)$  with the probability measure  $\mu_P$  defined by

$$\mu_P(Y) = \frac{1}{d} \cdot \#(Y \cap \{\alpha_1, \ldots, \alpha_d\}).$$

This is a Borel measure on  $\mathbb{C}$ . For any polynomial Q, we have

$$rac{1}{d}\log| ext{res}(P,Q)| = rac{1}{d}\sum_{i\leq d}\log|Q(lpha_i)| = \int_{\mathbb{C}}\log|Q(z)|d\mu_P(z).$$

We also have

$$\frac{1}{d}(\alpha_1+\cdots+\alpha_d)=\int_{\mathbb{C}}z\,d\mu_P(z).$$

### Polynomials to measures

For any Borel probability measure  $\mu$  on  $\mathbb C$  with compact support, we define

$$\log \operatorname{res}(\mu, Q) = \int_{\mathbb{C}} \log |Q(z)| d\mu(z) \text{ and } \operatorname{a.tr}(\mu) = \int_{\mathbb{C}} z \, d\mu(z).$$

If  $\mu = \mu_P$ , where P is an irreducible monic integer polynomial , we have

 $\log.res(\mu, Q) \ge 0$  for Q an integer polynomial unless P|Q.

Additionally, if  $\alpha$  is a totally positive root of P, then  $\operatorname{a.tr}(\mu) = \operatorname{a.tr}(\alpha)$ .

## Discriminant of a measure

For any Borel probability measure  $\mu$  on  $\mathbb C$  with compact support, we define

$$\log \Delta(\mu) = \int \int \log |z - w| d\mu(z) d\mu(w).$$

This is  $-\infty$  for any measure coming from a polynomial; however, if  $Q_1, Q_2, \ldots$  is a sequence of squarefree monic integer polynomials, and if the measures  $\mu_{Q_1}, \mu_{Q_2}, \ldots$  converge in an appropriate sense to the Borel measure  $\mu$ , then

 $\log \Delta(\mu) \geq 0.$ 

# The implications from measures

#### Proposition

Choose  $\lambda > 0$  and a finite list of integer polynomials  $Q_1, \ldots, Q_N$ . Suppose that every Borel measure  $\mu$  on  $[0, \infty]$  satisfying

 $\log.\Delta(\mu) \geq 0, \quad \log.\mathsf{res}(\mu, Q_i) \geq 0$ 

also satisfies a.tr( $\mu$ ) >  $\lambda$ . Then there are finitely many totally positive algebraic integers  $\alpha$  that satisfy

 $\operatorname{a.tr}(\alpha) \leq \lambda.$ 

Our goal is to minimize  $a.tr(\mu)$  subject to the discriminant condition and some set of resultant conditions

### Schur's result

#### Proposition (Schur 1918)

Suppose a given probability measure  $\mu$  on  $[0,\infty]$  satisfies  $\log \Delta(\mu) \ge 0$ . Then

a.tr
$$(\mu) \ge e^{1/2} \approx 1.6487.$$

So, for any  $\epsilon > 0$ , we conclude that there are finitely many totally positive algebraic integers satisfying  $a.tr(\alpha) \le e^{1/2} - \epsilon$ . The probability measure

$$d\mu(x) = rac{1}{2e^{1/2}\pi} \sqrt{rac{4e^{1/2} - x}{x}} dx$$

is the unique measure for which this inequality is sharp.

# Schur's distribution



## The potential of Schur's distribution

With  $\mu$  as above, we define the potential  $U^{\mu}$  of  $\mu$  on  $\mathbb{C}$  by

$$U^{\mu}(z) = -\int \log |z-w| d\mu(z).$$



### Proposition (Siegel 1945)

Suppose the probability measure  $\mu$  on  $[0,\infty]$  satisfies  $\log \Delta(\mu) \ge 0$ and  $\log \operatorname{res}(\mu, z) \ge 0$ . Then

 $a.tr(\mu) > 1.7336.$ 

This implies that there are finitely many totally positive algebraic integers of absolute trace at most 1.7336

# Siegel's optimal measure



Add the restriction log.res $(\mu, z - 1) \ge 0$ 



Shows that a.tr( $\alpha$ ) > 1.7773 with finitely many exceptions.

Add the restriction log.res $(\mu, z - 2) \ge 0$ 



Shows that a.tr( $\alpha$ ) > 1.7778 with finitely many exceptions.

## The potential of this measure



Add the restriction log.res $(\mu, z^2 - 3z + 1) \ge 0$ 



Shows that a.tr( $\alpha$ ) > 1.7941 with finitely many exceptions, beating the prior best bound.

Add the restriction log.res( $\mu$ ,  $z^3 - 5z^2 + 6z - 1$ )  $\geq 0$ 



Shows that a.tr( $\alpha$ ) > 1.7999 with finitely many exceptions

Add restrictions for the two exceptional quartics



Shows that  $a.tr(\alpha) > 1.8021$  with finitely many exceptions

## The road to 2

We cannot extend this method more than a couple hundreths beyond 1.8021.

I do not currently think this reflects a limitation of the method.

#### Conjecture

Take  $\mu$  to be a Borel probability measure supported on a compact subset  $\Sigma$  of  $\mathbb R.$  Suppose

 $\log.res(\mu, Q) \ge 0$  for all nonzero integer polynomials Q.

Then there is a sequence of monic integer polynomials  $P_1, P_2, ...$  with roots in  $\Sigma$  so  $\mu_{P_1}, \mu_{P_2}, ...$  have limit  $\mu$ .

# Serre's result

The first person who realized that Smyth's method could not solve the trace problem for  $\lambda < 2$  was Serre. His proof used potential theory, and took advantage of the fact that, for an integral polynomial P, |P(0)| is either 0 or at least 1.

#### Proposition

There is a Borel probability distribution approximately given by

$$d\mu(x) = \frac{.25x + .043}{x\sqrt{(4.41 - x)(x - 0.087)}}dx$$
 on  $\approx$  [.087, 4.41]

satisfying

- $\log.res(\mu, z) \ge 0;$
- log.res $(\mu, P) \ge 0$  for any complex polynomial P with  $|P(0)| \ge 1$ ; and

• a.tr( $\mu$ )  $\approx$  1.898.

## More on this measure

In particular, this measure satisfies log.res( $\mu$ , P)  $\geq$  0 for any nonzero integer polynomial P.

If the above conjecture holds, it would imply  ${\rm a.tr}(\alpha) < 1.9$  holds for infinitely many  $\alpha$  .



# Using the value at 1



# Using the value at $\ensuremath{2}$



Using the resultant with  $z^2 - 3z + 1$ 



# Using the resultant with $z^3 - 5z^2 + 6z - 1$



#### Conjecture

There are infinitely many totally positive algebraic integers with absolute trace at most 1.818.

#### Connection to abelian varieties over finite fields

Choose a prime power q, and take P to be a monic integer polynomial with all roots in the interval  $[-2\sqrt{q}, 2\sqrt{q}]$ . As a consequence of the Honda–Tate theorem, there is an abelian variety  $A/\mathbb{F}_q$  so

$$\#A(\mathbb{F}_q)^{1/\dim A} = P(q+1)^{1/\deg(P)}.$$

#### Theorem (van Bommel– Costa– Li– Poonen–S.)

Fix a prime power q. Then, for n sufficiently large, every integer in the interval

$$\left[\left(q-2q^{1/2}+3-q^{-1}\right)^{n},\,\left(q+2q^{1/2}-3-q^{-1}\right)^{n}\right]$$

is the order of a geometrically simple ordinary principally polarized abelian variety of dimension n over  $\mathbb{F}_q$ .

With q fixed and n tending to infinity, we would like to better understand how far  $\#A(\mathbb{F}_q)$  can be beyond endpoints of the interval given above for  $A/\mathbb{F}_q$  a simple n-dimensional abelian variety.

Here, our work is more incomplete.

## The corresponding problem on Borel measures

#### Problem

For a fixed q and a fixed list of integer polynomials  $Q_1, \ldots, Q_N$ , determine the probability measure  $\mu$  on  $[-2\sqrt{q}, 2\sqrt{q}]$  for which log.res $(\mu, q + 1 - z)$  is maximized/minimized, subject to the restrictions

 $\log \Delta(\mu) \ge 0$  and  $\log \operatorname{res}(\mu, Q_i) \ge 0$  for  $i \le N$ .

For a fixed q and list of polynomials  $Q_1, \ldots, Q_N$ , this can be attacked using the same techniques that worked for the trace problem.

A natural  $Q_1$  for the minimization problem would be  $z - \lfloor 2\sqrt{q} \rfloor$ . The effect of the restriction log.res $(\mu, Q_1) \ge 0$  on  $\mu$  then depends heavily on  $2\sqrt{q} \mod 1$ . On the other hand, the discriminant condition has no such cyclical behavior.

### The case of square q

In the case where q is a square,  $2\sqrt{q}$  is an integer. The limit over square q actually returns to the trace problem.

Theorem (S.)

Fix an square prime power q. For sufficiently large n, there is no simple abelian variety  $A/\mathbb{F}_q$  of dimension n satisfying

$$\# A(\mathbb{F}_q) \leq (q-2q^{1/2}+1+1.802)^n$$
 or  $\# A(\mathbb{F}_q) \geq (q+2q^{1/2}+1-1.802)^n.$ 

On the other hand, if our above conjecture holds, then there is a simple abelian variety  $A/\mathbb{F}_q$  of dimension n satisfying

$$\#A(\mathbb{F}_q) \leq (q - 2q^{1/2} + 1 + 1.817)^n$$

and another satisfying

$$\#A(\mathbb{F}_q) \ge (q+2q^{1/2}+1-1.817)^n.$$

Thank you!