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Defining absolute trace

An algebraic integer α is a complex root to a monic polynomial

P(z) = zd + ad−1zd−1 + · · ·+ a0

with a0, . . . , ad−1 rational integers.
Assume that this polynomial is irreducible, and take
α1 = α, . . . , αd to be its complex roots. We call α totally positive
if these roots are all positive real numbers. We define the absolute
trace of α by

a.tr(α) = 1
d (α1 + · · ·+ αd ) = −ad−1

d .

Question
How small can the absolute trace of a totally positive algebraic
integer be?



Totally positive algebraic integers with small absolute trace

For the polynomial z − 1, we have

a.tr(1) = 1
1(1) = 1.

This is the limit: suppose the integral irreducible degree d
polynomial P has real positive roots α1, . . . , αd . Then, by the
AM-GM inequality,

a.tr(α1) = 1
d (α1 + · · ·+ αd ) ≥ (α1 . . . αd )1/d = |P(0)|1/d .

Since P(0) is an integer, and since 0 is not a root of P, we can
conclude that a.tr(α1) ≥ 1.



Totally positive algebraic integers with small absolute trace
Some other examples:
I A root α of

z2 − 3z + 1 ≈ (z − .3820)(z − 2.6180)

has a.tr(α) = 3/2.
I A root α of

z3 − 5z2 + 6z − 1 ≈ (z − .1981)(z − 1.5550)(z − 3.2470)

has a.tr(α) = 5/3.
I A root α of

z4 − 7z3 + 13z2 − 7z + 1 or of
z4 − 7z3 + 14z2 − 8z + 1

has a.tr(α) = 7/4.



Best previous bound on absolute trace

Theorem (Liang–Wu, ’11)
If α is a totally positive algebraic integer, then it is either one of
the examples we have already mentioned, or

a.tr(α) ≥ 1.79193.

On the other hand, for any odd prime q, the totally positive
algebraic integer αq = 4 cos2(π/q) satisfies
a.tr(αq) = 2− 2/(q − 1), so there are infinitely many totally
positive algebraic integers with absolute trace < 2.



The Schur–Siegel–Smyth trace problem

For a given λ in (0, 2), show that there are finitely many totally
positive algebraic integers with absolute trace at most λ.



Progress on the Schur–Siegel–Smyth trace problem

Theorem (S. ’21)
If α is a totally positive algebraic integer, then the inequality

a.tr(α) > λ

holds for λ = 1.802 with finitely many exceptions.



Timeline for bounds on a.tr

The bound λ Reference
1.6487 Schur (1918)
1.7336 Siegel (1945)
1.7719 Smyth (1984)
1.7783786 McKee and Smyth (2004)
1.784109 Aguirre and Peral (2008)
1.78702 Flammang (2009)
1.79193 Liang and Wu (2011)
1.802 S. (2021)



The resultant

Suppose P is a degree d-integer polynomial. We have already
noted P(0) is an integer. Some similar examples include:
I P(−1) and P(2) are integers
I 3d P(1/3) is an integer
I P(i)P(−i) is an integer

More generally, if Q(z) = be(z − β1) . . . (z − βe) is an integral
polynomial, then the resultant

res(Q,P) = bd
e P(β1) . . .P(βd )

is an integer.



The Smyth approach to the Schur–Siegel–Smyth trace
problem

Smyth pioneered an approach to the trace problem that just uses
this fact about resultants; this is the only approach to the problem
that has improved the bound since. These results fit in the
following template:

Theorem
Take λ,N from any row of the table on the next slide. There is
then an explicit list of N irreducible integer polynomials
Q1, . . . ,QN so that, if a given real polynomial

P(z) = (z − α1)(z − α2) . . . (z − αd )

has positive roots and satisfies |res(Qi ,P)| ≥ 1 for all i ≤ N, then
the roots must also satisfy

1
d (α1 + · · ·+ αd ) > λ.



The Smyth approach to the Schur–Siegel–Smyth trace
problem

The bound λ Polynomial count N Reference
1.0 1 Folklore use of AM-GM
1.7719 ≈ 15 Smyth (1984)
1.7783786 18 McKee and Smyth (2004)
1.780022 24 Aguirre, Bilbao and Peral (2006)
1.783622 28 Aguirre and Peral (2007)
1.784109 31 Aguirre and Peral (2008)
1.78702 35 Flammang (2009)
1.78839 70 McKee (2011)
1.79193 86 Liang and Wu (2011)



What can we use besides the resultant?

We can use the discriminant; the discriminant of the monic
polynomial P(z) = (z − α1) . . . (z − αd ) is defined by

∆(P) =
∏

1≤i<j≤d
(αi − αj)2.

If P is an integer polynomial, this is an integer. If P is also
squarefree, we have |∆(P)| ≥ 1.
Discriminant information is not so useful in small degrees, but
becomes increasingly useful as d increases.



Polynomials to measures

Given complex numbers α1, . . . , αd , we associate the polynomial
P(z) = (z − α1) . . . (z − αd ) with the probability measure µP
defined by

µP(Y ) = 1
d ·#(Y ∩ {α1, . . . , αd}).

This is a Borel measure on C.
For any polynomial Q, we have

1
d log |res(P,Q)| = 1

d
∑
i≤d

log |Q(αi )| =
∫
C

log |Q(z)|dµP(z).

We also have

1
d (α1 + · · ·+ αd ) =

∫
C

z dµP(z).



Polynomials to measures

For any Borel probability measure µ on C with compact support,
we define

log.res(µ,Q) =
∫
C

log |Q(z)|dµ(z) and a.tr(µ) =
∫
C

z dµ(z).

If µ = µP , where P is an irreducible monic integer polynomial , we
have

log.res(µ,Q) ≥ 0 for Q an integer polynomial unless P|Q.

Additionally, if α is a totally positive root of P, then
a.tr(µ) = a.tr(α).



Discriminant of a measure

For any Borel probability measure µ on C with compact support,
we define

log.∆(µ) =
∫ ∫

log |z − w |dµ(z)dµ(w).

This is −∞ for any measure coming from a polynomial; however, if
Q1,Q2, . . . is a sequence of squarefree monic integer polynomials,
and if the measures µQ1 , µQ2 , . . . converge in an appropriate sense
to the Borel measure µ, then

log.∆(µ) ≥ 0.



The implications from measures

Proposition
Choose λ > 0 and a finite list of integer polynomials Q1, . . . ,QN .
Suppose that every Borel measure µ on [0,∞] satisfying

log.∆(µ) ≥ 0, log.res(µ,Qi ) ≥ 0

also satisfies a.tr(µ) > λ. Then there are finitely many totally
positive algebraic integers α that satisfy

a.tr(α) ≤ λ.

Our goal is to minimize a.tr(µ) subject to the discriminant
condition and some set of resultant conditions



Schur’s result

Proposition (Schur 1918)
Suppose a given probability measure µ on [0,∞] satisfies
log.∆(µ) ≥ 0. Then

a.tr(µ) ≥ e1/2 ≈ 1.6487.

So, for any ε > 0, we conclude that there are finitely many totally
positive algebraic integers satisfying a.tr(α) ≤ e1/2 − ε.
The probability measure

dµ(x) = 1
2e1/2π

√
4e1/2 − x

x dx

is the unique measure for which this inequality is sharp.



Schur’s distribution



The potential of Schur’s distribution

With µ as above, we define the potential Uµ of µ on C by

Uµ(z) = −
∫

log |z − w |dµ(z).



Siegel’s result

Proposition (Siegel 1945)
Suppose the probability measure µ on [0,∞] satisfies log.∆(µ) ≥ 0
and log.res(µ, z) ≥ 0. Then

a.tr(µ) > 1.7336.

This implies that there are finitely many totally positive algebraic
integers of absolute trace at most 1.7336



Siegel’s optimal measure

Density approximately proportional to√
(x − 0.028)(6.01− x)

x



Add the restriction log.res(µ, z − 1) ≥ 0

Density approximately proportional to√
(x − 0.036)(.828− x)(x − 1.19)(5.71− x)

x(x − 1)

Shows that a.tr(α) > 1.7773 with finitely many exceptions.



Add the restriction log.res(µ, z − 2) ≥ 0

Shows that a.tr(α) > 1.7778 with finitely many exceptions.



The potential of this measure



Add the restriction log.res(µ, z2 − 3z + 1) ≥ 0

Shows that a.tr(α) > 1.7941 with finitely many exceptions, beating
the prior best bound.



Add the restriction log.res(µ, z3 − 5z2 + 6z − 1) ≥ 0

Shows that a.tr(α) > 1.7999 with finitely many exceptions



Add restrictions for the two exceptional quartics

Shows that a.tr(α) > 1.8021 with finitely many exceptions



The road to 2

We cannot extend this method more than a couple hundreths
beyond 1.8021.
I do not currently think this reflects a limitation of the method.

Conjecture
Take µ to be a Borel probability measure supported on a compact
subset Σ of R. Suppose

log.res(µ,Q) ≥ 0 for all nonzero integer polynomials Q.

Then there is a sequence of monic integer polynomials P1,P2, . . .
with roots in Σ so µP1 , µP2 , . . . have limit µ.



Serre’s result

The first person who realized that Smyth’s method could not solve
the trace problem for λ < 2 was Serre. His proof used potential
theory, and took advantage of the fact that, for an integral
polynomial P, |P(0)| is either 0 or at least 1.

Proposition
There is a Borel probability distribution approximately given by

dµ(x) = .25x + .043
x
√

(4.41− x)(x − 0.087)
dx on ≈ [.087, 4.41]

satisfying
I log.res(µ, z) ≥ 0;
I log.res(µ,P) ≥ 0 for any complex polynomial P with
|P(0)| ≥ 1; and

I a.tr(µ) ≈ 1.898.



More on this measure

In particular, this measure satisfies log.res(µ,P) ≥ 0 for any
nonzero integer polynomial P.
If the above conjecture holds, it would imply a.tr(α) < 1.9 holds
for infinitely many α .



Using the value at 1

This measure has a.tr(µ) ≈ 1.847.



Using the value at 2

This measure has a.tr(µ) ≈ 1.836.



Using the resultant with z2 − 3z + 1

This measure has a.tr(µ) ≈ 1.820.



Using the resultant with z3 − 5z2 + 6z − 1

This measure has a.tr(µ) ≈ 1.817.

Conjecture
There are infintely many totally positive algebraic integers with
absolute trace at most 1.818.



Connection to abelian varieties over finite fields
Choose a prime power q, and take P to be a monic integer
polynomial with all roots in the interval [−2√q, 2√q]. As a
consequence of the Honda–Tate theorem, there is an abelian
variety A/Fq so

#A(Fq)1/ dim A = P(q + 1)1/deg(P).

Theorem (van Bommel– Costa– Li– Poonen–S.)
Fix a prime power q. Then, for n sufficiently large, every integer in
the interval[(

q − 2q1/2 + 3− q−1
)n
,
(

q + 2q1/2 − 3− q−1
)n]

is the order of a geometrically simple ordinary principally polarized
abelian variety of dimension n over Fq.



Our main goal

With q fixed and n tending to infinity, we would like to better
understand how far #A(Fq) can be beyond endpoints of the
interval given above for A/Fq a simple n-dimensional abelian
variety.

Here, our work is more incomplete.



The corresponding problem on Borel measures

Problem
For a fixed q and a fixed list of integer polynomials Q1, . . . ,QN ,
determine the probability measure µ on [−2√q, 2√q] for which
log.res(µ, q + 1− z) is maximized/minimized, subject to the
restrictions

log.∆(µ) ≥ 0 and log.res(µ,Qi ) ≥ 0 for i ≤ N.

For a fixed q and list of polynomials Q1, . . . ,QN , this can be
attacked using the same techniques that worked for the trace
problem.
A natural Q1 for the minimization problem would be z − b2√qc.
The effect of the restriction log.res(µ,Q1) ≥ 0 on µ then depends
heavily on 2√q mod 1. On the other hand, the discriminant
condition has no such cyclical behavior.



The case of square q
In the case where q is a square, 2√q is an integer. The limit over
square q actually returns to the trace problem.
Theorem (S.)
Fix an square prime power q. For sufficiently large n, there is no
simple abelian variety A/Fq of dimension n satisfying

#A(Fq) ≤ (q − 2q1/2 + 1 + 1.802)n or
#A(Fq) ≥ (q + 2q1/2 + 1− 1.802)n.

On the other hand, if our above conjecture holds, then there is a
simple abelian variety A/Fq of dimension n satisfying

#A(Fq) ≤ (q − 2q1/2 + 1 + 1.817)n

and another satisfying

#A(Fq) ≥ (q + 2q1/2 + 1− 1.817)n.



Thank you!


