Stronger arithmetic equivalence

Andrew V. Sutherland
Massachusetts Institute of Technology

June 28, 2021
arXiv:2104.01956

The Dedekind zeta function of a number field

Definition

Let $K=\mathbb{Q}(\alpha)$ be a number field. The Dedekind zeta function of K is defined by

$$
\zeta_{K}(s):=\sum_{n \geq 1} a_{n} n^{-s}:=\sum_{I} N(I)^{-s}=\prod_{\mathfrak{p}}\left(1-N(\mathfrak{p})^{-s}\right)^{-1}
$$

Each of the following is uniquely determined by the others:

- the Dedekind zeta function $\zeta_{K}(s)$;
- the integer coefficients $a_{p}, a_{p^{2}}, \ldots, a_{p^{d}}$ for all primes p, where $d=[K: \mathbb{Q}]$;
- the number of primes of K of degree r above p, for all p and $1 \leq r \leq d$.
- the cycle type of the permutation of Frob_{p} acting on $\left\{\sigma(\alpha): \sigma \in G_{K}\right\}$ for all p.

One can replace "all" with "all but finitely many" throughout.

Arithmetic equivalence

Definition

Number fields K_{1} and K_{2} are arithmetically equivalent if $\zeta_{K_{1}}(s)=\zeta_{K_{2}}(s)$. The fields $K_{1} \sim K_{2}$ must have the same degree and Galois closure L.

Let $G:=\operatorname{Gal}(L / \mathbb{Q}), H_{1}:=\operatorname{Gal}\left(L / K_{1}\right)$, and $H_{2}:=\operatorname{Gal}\left(L / K_{2}\right)$.

Definition

A Gassmann triple $\left(G, H_{1}, H_{2}\right)$ is a triple of finite groups $H_{1}, H_{2} \leq G$ for which we have $\#\left(H_{1} \cap C\right)=\#\left(H_{2} \cap C\right)$ for every G-conjugacy class C of elements of G. We then say that $H_{1} \sim H_{2}$ are Gassmann equivalent (as subgroups of G).

Theorem (Gassmann 1926)

$K_{1} \sim K_{2}$ if and only if $H_{1} \sim H_{2}$.
Note that K_{1} and K_{2} are isomorphic if and only if H_{1} and H_{2} are conjugate.

Some examples of Gassmann triples

Example

Let $G=\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$, let $H_{1}=\left\{\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right) \in G\right\}$, and let $H_{2}=\left\{\left(\begin{array}{cc}1 & * \\ 0 & *\end{array}\right) \in G\right\}$.
Then $\left(G, H_{1}, H_{2}\right)$ is a non-trivial Gassmann triple (de Smit 2004).
Let E / \mathbb{Q} be an elliptic curve with mod-3 Galois image G, and let $L=\mathbb{Q}(E[3])$. Then $\operatorname{Gal}(L / \mathbb{Q}) \simeq G$, and $K_{1}:=L^{H_{1}}$ and $K_{2}=L^{H_{2}}$ are non-conjugate arithmetically equivalent number fields of degree 8 (one can achieve 7 using $H_{1}, H_{2} \leq \mathrm{SL}_{3}\left(\mathbb{F}_{2}\right)$).

Lemma

Finite groups H_{1} and H_{2} occur as elements of a Gassmann triple $\left(G, H_{1}, H_{2}\right)$ if and only if they have the same order statistics.

It follows that Gassmann equivalence does not imply isomorphism: consider $(\mathbb{Z} / p \mathbb{Z})^{3}$ and $\mathrm{H}_{3}\left(\mathbb{F}_{p}\right):=\left\{\left(\begin{array}{ccc}1 & * & * \\ 0 & 1 & * \\ 0 & 1 & 1\end{array}\right)\right\}$ for any prime $p \geq 3$, or $\langle 16,3\rangle$ and $\langle 16,10\rangle$, for example.

Gassmann triples in other contexts

Gassmann triples (G, H_{1}, H_{2}) arise in many contexts that involve potentially non-isomorphic objects with the same "zeta function":

- If $\pi: M \rightarrow M_{0}$ is a normal finite Riemannian covering with deck group G, then M / H_{1}, and M / H_{2} are isospectral (Sunada 1985).
- If Γ is a finite graph with $G=\operatorname{Aut}(\Gamma)$ then Γ / H_{1} and Γ / H_{2} are isospectral (Halbeisen-Hungerbühler 1995).
- If X / k is a projective curve with $G=\operatorname{Aut}(X)$, then X / H_{1} and X / H_{2} have isogenous Jacobians (Prasad-Rajan 2003).
- If $G=\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, then the modular curves $X_{H_{1}}$ and $X_{H_{2}}$ parameterizing elliptic curves with "level H_{i}-structure" have the same L-function.
- If $\pi: X \rightarrow Y$ is a Galois étale cover of k-varieties then X / H_{1} and X / H_{2} have isomorphic Chow motives (Arapura-Katz-McReynolds-Solapurkar 2019).
Unlike the number field case, non-trivial Gassmann triples may yield isomorphic objects, and zeta function equality does not always force Gassmann equivalence.

How strong is arithmetic equivalence?

Theorem (Perlis 1977)

Arithmetically equivalent number fields K_{1} and K_{2} have the same degree, discriminant, signature, roots of unity, normal closure, and normal core.

The analytic class number formula

$$
\lim _{s \rightarrow 1+}(s-1) \zeta_{K_{i}}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K_{i}} R_{K_{i}}}{\# \mu_{K_{i}}\left|D_{K_{i}}\right|^{1 / 2}}
$$

implies $h_{K_{1}} R_{K_{1}}=h_{K_{2}} R_{K_{2}}$, but the class numbers $h_{K_{i}}$ and regulators $R_{K_{i}}$ may differ. There is a bijection of the places of K_{1} and K_{2} that preserves residue fields, but it may not be possible for this bijection to also preserve ramification indices. In particular, the adele rings $\mathbb{A}_{K_{1}}$ and $\mathbb{A}_{K_{2}}$ need not be isomorphic.

Local isomorphism

Definition

Two number fields are locally isomorphic if there is a bijection of places in which corresponding completions are isomorphic (this forces arithmetic equivalence).

Proposition (Iwasawa 1953)

Number fields K_{1}, K_{2} are locally isomorphic if and only if they have isomorphic rings of adèles $\mathbb{A}_{K_{1}} \simeq \mathbb{A}_{K_{2}}$ (as topological rings and as $\mathbb{A}_{\mathbb{Q}}$-algebras).

Proposition (Linowitz-McReynolds-Miller 2017)

Locally isomorphic number fields have isomorphic Brauer groups.
Locally isomorphic number fields may have distinct class numbers, as happens with $\mathbb{Q}(\sqrt[8]{-33})$ and $\mathbb{Q}(\sqrt[8]{-33 \cdot 16})$, with class numbers 256 and 128 (de Smit-Perlis, 1994).

Plan for the talk

- Define three stronger notions of Gassmann equivalence (\mathbb{Q}) :
- local integral equivalence $\left(\mathbb{Z}_{p}\right)$
- integral equivalence (\mathbb{Z})
- solvable equivalence ($/$)
- Investigate their consequences beyond arithmetic equivalence $\left(\zeta_{K_{1}}=\zeta_{K_{2}}\right)$:
- class group isomorphism $\left(\mathrm{cl}_{K_{1}} \simeq \mathrm{cl}_{K_{2}}\right)$
- local isomorphism $\left(\mathbb{A}_{K_{1}} \simeq \mathbb{A}_{K_{2}}\right)$
- Galois group isomorphism $\left(\operatorname{Gal}\left(L / K_{1}\right) \simeq \operatorname{Gal}\left(L / K_{2}\right)\right)$
- Construct explicit examples and counterexamples

Gassmann equivalence (\mathbb{Q})

Definition

Let $[H \backslash G]$ be the transitive (right) G-set consisting of (right) cosets of H.
Let $\chi_{H}: G \rightarrow \mathbb{Z}$ be the permutation character $g \mapsto \#[H \backslash G]^{g}$ (the character of 1_{H}^{G}).
Define $\chi_{H}(K):=\#[H \backslash G]^{K}$ for $K \leq G\left(\right.$ note $\left.\chi_{H}(K) \neq 0 \Leftrightarrow K \leq_{G} H\right)$.

Proposition

For all $H_{1}, H_{2} \leq G$ the following are equivalent:

- $\#\left(H_{1} \cap C\right)=\#\left(H_{2} \cap C\right)$ for all $C \in \operatorname{conj}(G)$;
- there is a G-conjugacy preserving bijection $H_{1} \longleftrightarrow H_{2}$;
- $\chi_{H_{1}}(K)=\chi_{H_{2}}(K)$ for all cyclic $K \leq G$;
- the G-sets $\left[H_{1} \backslash G\right]$ and $\left[H_{2} \backslash G\right]$ are isomorphic as K-sets for all cyclic $K \leq G$;
- $\mathbb{Q}\left[H_{1} \backslash G\right] \simeq \mathbb{Q}\left[H_{2} \backslash G\right]$ as $\mathbb{Q}[G]$-modules.

One can replace "all $K \leq G$ " with "all $K \leq H_{1}$ and all $K \leq H_{2}$ ".

Local integral equivalence $\left(\mathbb{Z}_{p}\right)$

Definition

$H_{1}, H_{2} \leq G$ are locally integrally equivalent if $\mathbb{Z}_{p}\left[H_{1} \backslash G\right] \simeq \mathbb{Z}_{p}\left[H_{2} \backslash G\right]$ for all primes p.

Proposition

Call a group p-cyclic if its quotient by its p-core (largest normal p-subgroup) is cyclic. For all $H_{1}, H_{2} \leq G$ the following are equivalent:

- there is a G-conjugacy class preserving bijection of p-cyclic $K \leq H_{1}, H_{2}$;
- $\chi_{H_{1}}(K)=\chi_{H_{2}}(K)$ for all p-cyclic $K \leq G$ (or all $K \leq H_{1}, H_{2}$);
- $\mathbb{F}_{p}\left[H_{1} \backslash G\right] \simeq \mathbb{F}_{p}\left[H_{2} \backslash G\right]$ as $\mathbb{F}_{p}[G]$-modules;
- $\mathbb{Z}_{p}\left[H_{1} \backslash G\right] \simeq \mathbb{Z}_{p}\left[H_{2} \backslash G\right]$ as $\mathbb{Z}_{p}[G]$-modules.

Theorem (Perlis 1978)

Locally integrally equivalent number fields have isomorphic class groups.

Integral equivalence (\mathbb{Z})

Definition

$H_{1}, H_{2} \leq G$ are integrally equivalent if $\mathbb{Z}\left[H_{1} \backslash G\right] \simeq \mathbb{Z}\left[H_{2} \backslash G\right]$.
Let $H_{1}, H_{2} \leq G$ have index n, let $\rho_{1}, \rho_{2}: G \rightarrow S_{n}$ be the representations corresponding to the permutation modules $\mathbb{Z}\left[H_{1} \backslash G\right], \mathbb{Z}\left[H_{2} \backslash G\right]$.

Fix an ordering of $\left[H_{1} \backslash G\right.$] and $\left[H_{2} \backslash G\right]$. We may represent elements of $\left.\operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[H_{1} \backslash G\right], \mathbb{Z}\left[H_{2} \backslash G\right]\right)\right)$ by matrices $M \in \mathbb{Z}^{n \times n}$ that satisfy

$$
M_{i j}=M_{\rho_{1}(g)(i), \rho_{2}(g)(j)} \quad \text { for all } g \in G
$$

(\mathbb{Q}) rational equivalence:

$$
\exists M \operatorname{det}(M) \neq 0
$$

$\left(\mathbb{Z}_{p}\right)$ local integral equivalence: $\exists M_{i} \operatorname{gcd}\left(\operatorname{det}\left(M_{1}\right), \ldots, \operatorname{det}\left(M_{r}\right)\right)=1$
(\mathbb{Z}) integral equivalence: $\quad \exists M \operatorname{det}(M)= \pm 1$

What we know about integral equivalence

Theorem (Prasad 2017)

Let $\pi: X \rightarrow Y$ be a Galois cover of nice curves over k with Galois group G. If $H_{1}, H_{2} \leq G$ are integrally equivalent then $\operatorname{Jac}\left(X / H_{1}\right) \simeq \operatorname{Jac}\left(X / H_{2}\right)$.

Remark: Infinite families of non-isomorphic curves of low genus with isomorphic Jacobians were previously known (Howe 2005).

Essentially only one non-trivial example of integral equivalence is known: $G=\mathrm{PSL}_{2}\left(\mathbb{F}_{29}\right)$ with $H_{1}, H_{2} \simeq A_{5}$ subgroups of index 203 (Scott 1992).

Scott proved this by writing down $M \in \operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[H_{1} \backslash G\right], \mathbb{Z}\left[H_{2} \backslash G\right]\right) \subseteq \mathbb{Z}^{203 \times 203}$ with $\operatorname{det} M=1$ (most of the entries in M are zero, the nonzero entries are ± 1).

Similar triples exist for all primes $p \equiv \pm 29 \bmod 120 \ldots$
\ldots but for $p=149$ we need $M \in \mathbb{Z}^{27565 \times 27565}$ (and none of the simplest M work).

What we don't know about integral equivalence

Two questions about naturally arise from Prasad's 2017 result.
Question 1: Must integrally equivalent $H_{1}, H_{2} \leq G$ be isomorphic?
We show that locally integrally equivalent $H_{1}, H_{2} \leq G$ need not be, in general, but rationally equivalent subgroups of $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$ are isomorphic (S 2016), so this necessarily holds for Scott's example.

Question 2: Must integrally equivalent number fields be locally isomorphic?
We show that locally integrally equivalent number fields need not be, in general, but locally integrally equivalent subgroups of $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$ force local isomorphism, so this necessarily holds for Scott's example.

Remark: $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$ can be realized as a Galois group over \mathbb{Q} (Zywina 2015); this was proved for $p=29$ in (Shih 1974).

Solvable equivalence (/)

Definition

$H_{1}, H_{2} \leq G$ are solvably equivalent if $\chi_{H_{1}}(K)=\chi_{H_{2}}(K)$ for all solvable $K \leq G$.
Solvable equivalence implies local integral equivalence (hence isomorphic class groups), and also guarantees that corresponding number fields are locally isomorphic.

Proposition

Number fields K_{1}, K_{2} corresponding to solvably equivalent $H_{1}, H_{2} \leq G$ are arithmetically equivalent, locally isomorphic, and have isomorphic class groups. In particular, there is a bijection of the places of K_{1} and K_{2} that preserves residue fields and ramification indices, and yields isomorphic completions.

Remark: Solvable equivalence is stronger than necessary.

Results

Proposition

There are infinitely many non-isomorphic pairs of degree-32 number fields arising from locally (but not globally) integrally equivalent $H_{1}, H_{2} \leq G$ (and none of degree <32).

Proposition

There are infinitely many non-isomorphic pairs of degree-96 number fields arising from solvably (but not integrally) equivalent $H_{1}, H_{2} \leq G$ (and none of degree <48).

Proposition

For all primes $p \equiv \pm 29 \bmod 120$ the group $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$ contains a pair of non-conjugate solvably equivalent subgroups $H_{1}, H_{2} \simeq A_{5}$.
$H_{1}, H_{2} \simeq A_{5} \leq \mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$ are integrally equivalent for $p=29 ;$ this is open for $p>29$.

A minimal example of local integral equivalence

An exhaustive search of the 11,759,892 groups of order less than 1024 finds 74 that contain non-conjugate locally integrally equivalent subgroups with trivial normal core. The smallest two have GAP ids $\langle 384,18050\rangle$ and $\langle 384,18046\rangle$, isomorphic to transitive permutation groups 32 T 9403 and 32 T 9408 . Both are 2-extensions of $D_{4} \times S_{4}$.

Example

The polynomials

$$
\begin{aligned}
& x^{32}+12 x^{28}+72 x^{24}+120 x^{20}-234 x^{16}+108 x^{12}+396 x^{8}-432 x^{4}+81, \\
& x^{32}-12 x^{28}+72 x^{24}-120 x^{20}-234 x^{16}-108 x^{12}+396 x^{8}+432 x^{4}+81
\end{aligned}
$$

have the same splitting field, with Galois group $G=32 \mathrm{~T} 9403$.
They define non-isomorphic number fields K_{1}, K_{2} that are the fixed fields of locally integrally equivalent subgroups $H_{1}, H_{2} \leq G$ that are both isomorphic to D_{6}.

A minimal example of local integral equivalence

We can view each $M \in \operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[H_{1} \backslash G\right], \mathbb{Z}\left[H_{2} \backslash G\right]\right)$ as a 32×32 matrix with entries $a, b, c, \ldots, h \in \mathbb{Z}$, corresponding to the decomposition of G into double cosets $H_{1} g H_{2}$. A (non-trivial) calculation finds that

$$
\begin{aligned}
\operatorname{det} M= & -\left(2(b-c)^{2}+3(e-f)^{2}\right)^{8} \\
& \cdot(2(a-d)+(e+f-2 g))^{6} \\
& \cdot(2(a+b+c+d)-(e+f+2 g+4 h))^{3} \\
& \cdot(2(a-b-c+d)-(e+f+2 g-4 h))^{3} \\
& \cdot(2(a-d)-3(e+f-2 g))^{2} \\
& \cdot(2(a+b+c+d)+3(e+f+2 g+4 h)) \\
& \cdot(2(a-b-c+d)+3(e+f+2 g-4 h)) .
\end{aligned}
$$

One can choose $a, b, c, d, e, f, g, h \in \mathbb{Z}$ so that $\operatorname{det} M=2^{32}$, and so that $\operatorname{det} M=3^{12}$. H_{1} and H_{2} are not integrally equivalent because no $a, \ldots, h \in \mathbb{Z}$ make $\operatorname{det} M= \pm 1$. This negatively answers Question 2.10 in (Guralnick-Weiss 1993).
$e \begin{array}{lllllllllllllllllllllllllllll} & g & h & g & f & h & g & h & f & a & c & g & h & g & f & h & h & e & h & b & a & d & b & h & g & h & d & c & h\end{array} h \quad h e$
$\begin{array}{llllllllllllllllllllllllllllllll}a & h & c & h & d & g & d & e & h & g & h & h & c & h & h & b & b & h & g & h & f & e & h & g & a & f & g & h & f & e & g & h \\ e & b & h & g & f & d & g & h & e & h & f & b & h & g & c & h & h & f & h & g & h & h & g & a & g & h & h & e & a & d & h & c\end{array}$
$h \begin{array}{lllllllllllllllllllllllllllll} & h & g & a & h & f & h & b & d & f & h & h & g & d & h & e & f & a & c & h & g & g & h & e & h & b & e & h & g\end{array} \quad g \quad c \quad h$

Locally integrally equivalent subgroups need not be isomorphic

Example

Let G be the symmetric group S_{21} and consider the following pair of subgroups:

$$
\begin{aligned}
H_{1}:=\langle & (4,5)(6,15,7,14)(8,17,9,16)(10,19,11,18)(12,21,13,20), \\
& (1,2)(3,5)(6,20,8,18)(7,21,9,19)(10,14,12,16)(11,15,13,17)\rangle, \\
H_{2}:=\langle & (4,5)(6,16,8,14)(7,17,9,15)(10,20,12,18)(11,21,13,19), \\
& (1,2)(3,5)(6,20,8,18)(7,21,9,19)(10,17,12,15)(11,16,13,14)\rangle .
\end{aligned}
$$

Then $\mathbb{Z}_{p}\left[H_{1} \backslash G\right] \simeq \mathbb{Z}_{p}\left[H_{2} \backslash G\right]$ for every prime p but $H_{1} \not 千 H_{2}$. Indeed, the GAP identifiers of H_{1} and H_{2} are $\langle 48,12\rangle$ and $\langle 48,13\rangle$.

This example negatively answers Question 2.11 in (Guralnick-Weiss 1993). It is the first of many examples that can be obtained by comparing \mathcal{P}-statistics, where \mathcal{P} is the set of finite groups that are p-cyclic for some prime p.

Local integral equivalence does not imply local isomorphism

Example

The group $G:=A_{4} \times S_{5}$ contains locally integrally equivalent $H_{1}, H_{2} \simeq D_{6}$. Let L be the compositum of the splitting fields of the A_{4} and S_{5} polynomials $x^{4}-6 x^{2}-8 x+60$ and $x^{5}+5 x^{3}+10 x-2$, and let $K_{1}:=L^{H_{1}}$ and $K_{2}:=L^{H_{2}}$. Above the ramified prime 2 we have

$$
\begin{aligned}
& 2 \mathcal{O}_{K_{1}}=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3} \mathfrak{p}_{4} \mathfrak{p}_{5}^{6} \mathfrak{p}_{6}^{6} \mathfrak{p}_{7}^{6} \mathfrak{p}_{8}^{6} \mathfrak{p}_{9}^{6} \mathfrak{p}_{10}^{6} \mathfrak{p}_{11}^{6} \mathfrak{p}_{12}^{6} \mathfrak{p}_{13}^{2} \mathfrak{p}_{14}^{2} \mathfrak{p}_{15}^{3} \mathfrak{p}_{16}^{3} \mathfrak{p}_{17}^{6} \mathfrak{p}_{18}^{6} \mathfrak{p}_{19}^{6} \mathfrak{p}_{20}^{6}, \\
& 2 \mathcal{O}_{K_{2}}=\mathfrak{q}_{1}^{2} \mathfrak{q}_{2}^{2} \mathfrak{q}_{3}^{2} \mathfrak{q}_{4}^{2} \mathfrak{q}_{5}^{3} \mathfrak{q}_{6}^{3} \mathfrak{q}_{7}^{3} \mathfrak{q}_{8}^{3} \mathfrak{q}_{9}^{6} \mathfrak{q}_{10}^{6} \mathfrak{q}_{11}^{6} \mathfrak{q}_{12}^{6} \mathfrak{q}_{13} \mathfrak{q}_{14} \mathfrak{q}_{15}^{6} \mathfrak{q}_{16}^{6} \mathfrak{q}_{17}^{6} \mathfrak{q}_{18}^{6} \mathfrak{q}_{19}^{6} \mathfrak{q}_{20}^{6},
\end{aligned}
$$

which shows that $K_{1} \otimes_{\mathbb{Q}} \mathbb{Q}_{2} \not 千 K_{2} \otimes_{\mathbb{Q}} \mathbb{Q}_{2}$.

This example also shows that the sums of the ramification indices can differ even when the products do not, complementing the example in (Mantilla-Soler 2019).

An example of solvable equivalence

The group $G=16 \mathrm{~T} 1654$ of order 5760 contains non-conjugate $H_{1}, H_{2} \simeq A_{5}$ of index 96 such that every proper subgroup of H_{1} is a proper subgroup of H_{2}. It is the Galois group of an extension of $\mathbb{Q}[T]$, so Hilbert irreducibility gives infinitely many examples of corresponding number fields, including the splitting field of

$$
x^{16}-2 x^{15}+3 x^{14}-16 x^{13}+18 x^{12}-10 x^{10}+40 x^{9}-39 x^{8}+54 x^{7}+23 x^{6}+16 x^{5}-140 x^{4}-188 x^{3}-28 x^{2}+104 x-4
$$

Each $M \in \operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}\left[H_{1} \backslash G\right], \mathbb{Z}\left[H_{2} \backslash G\right]\right)$ has entries $a, b, c, d, e \in \mathbb{Z}$ with

$$
\begin{aligned}
\operatorname{det} M=- & (5 a+6 b+10 c+15 d+60 e)(a-6 b-10 c+3 d+12 e)^{5} \\
& (3 a+2 b-2 c-7 d+4 e)^{15}(3 a-2 b+2 c+d-4 e)^{30}(a+2 b-2 c+3 d-4 e)^{45}
\end{aligned}
$$

No $a, b, c, d, e \in \mathbb{Z}$ yield $\operatorname{det} M= \pm 1$, so H_{1} and H_{2} are not integrally equivalent. This example partially addresses Remark 4.3a in (Scott 1992) by providing a rank-5 example of locally isomorphic permutation modules that are not globally isomorphic (Scott proves a lower bound of 4 and an upper bound of 8 on the minimal rank).

Summary

$$
\text { subgroups } H_{1}, H_{2} \leq G
$$

(\mathbb{Q}) rational equivalence
$\left(\mathbb{Z}_{p}\right)$ local integral equivalence
(\mathbb{Z}) integral equivalence
(/) solvable equivalence

$$
\text { number fields } K_{1}, K_{2} \leq L
$$

$\left(\zeta_{K}\right)$ arithmetic equivalence $\left(\mathrm{cl}_{K}\right)$ class group isomorphism $\left(\mathbb{A}_{K}\right)$ local isomorphism
$(\simeq) \operatorname{Gal}(L / K)$-isomorphism
$(ノ) \Rightarrow\left(\zeta_{K}\right)$
$(\mathbb{Z}) \Rightarrow\left(\zeta_{K}\right)$
$\left(\mathbb{Z}_{p}\right) \Rightarrow\left(\zeta_{K}\right)$
$(\mathbb{Q}) \Rightarrow\left(\zeta_{K}\right)$
$(/) \Rightarrow\left(\mathrm{cl}_{K}\right)$
$(\mathbb{Z}) \Rightarrow\left(\mathrm{cl}_{K}\right)$
$\left(\mathbb{Z}_{p}\right) \Rightarrow\left(\mathrm{cl}_{K}\right)$
$(\mathbb{Q}) \nRightarrow\left(\mathrm{cl}_{K}\right)$
$(/) \Rightarrow\left(\mathbb{A}_{K}\right)$
$(\mathbb{Z}) ?\left(\mathbb{A}_{K}\right)$
$(/) ?(\simeq)$
$(\mathbb{Z}) ?(\simeq)$
$\left(\mathbb{Z}_{p}\right) \nRightarrow\left(\mathbb{A}_{K}\right)$
$(\mathbb{Q}) \nRightarrow\left(\mathbb{A}_{K}\right)$
$\left(\mathbb{Z}_{p}\right) \nRightarrow(\simeq)$
$(\mathbb{Q}) \nRightarrow(\simeq)$

