Stronger arithmetic equivalence

Andrew V. Sutherland

Massachusetts Institute of Technology

June 28, 2021

arXiv:2104.01956

The Dedekind zeta function of a number field

Definition

Let $K = \mathbb{Q}(\alpha)$ be a number field. The Dedekind zeta function of K is defined by

$$\zeta_K(s) := \sum_{n \ge 1} a_n n^{-s} := \sum_I N(I)^{-s} = \prod_{\mathfrak{p}} (1 - N(\mathfrak{p})^{-s})^{-1},$$

Each of the following is uniquely determined by the others:

- the Dedekind zeta function $\zeta_K(s)$;
- the integer coefficients $a_p, a_{p^2}, \ldots, a_{p^d}$ for all primes p, where $d = [K : \mathbb{Q}]$;
- the number of primes of K of degree r above p, for all p and $1 \le r \le d$.
- the cycle type of the permutation of Frob_p acting on $\{\sigma(\alpha) : \sigma \in G_K\}$ for all p. One can replace "all" with "all but finitely many" throughout.

Arithmetic equivalence

Definition

Number fields K_1 and K_2 are arithmetically equivalent if $\zeta_{K_1}(s) = \zeta_{K_2}(s)$. The fields $K_1 \sim K_2$ must have the same degree and Galois closure L.

Let $G := \operatorname{Gal}(L/\mathbb{Q})$, $H_1 := \operatorname{Gal}(L/K_1)$, and $H_2 := \operatorname{Gal}(L/K_2)$.

Definition

A Gassmann triple (G, H_1, H_2) is a triple of finite groups $H_1, H_2 \leq G$ for which we have $\#(H_1 \cap C) = \#(H_2 \cap C)$ for every G-conjugacy class C of elements of G. We then say that $H_1 \sim H_2$ are Gassmann equivalent (as subgroups of G).

Theorem (Gassmann 1926)

 $K_1 \sim K_2$ if and only if $H_1 \sim H_2$.

Note that K_1 and K_2 are isomorphic if and only if H_1 and H_2 are conjugate.

Some examples of Gassmann triples

Example

Let $G = \operatorname{GL}_2(\mathbb{F}_3)$, let $H_1 = \{ \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \in G \}$, and let $H_2 = \{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \in G \}$. Then (G, H_1, H_2) is a non-trivial Gassmann triple (de Smit 2004).

Let E/\mathbb{Q} be an elliptic curve with mod-3 Galois image G, and let $L = \mathbb{Q}(E[3])$. Then $\operatorname{Gal}(L/\mathbb{Q}) \simeq G$, and $K_1 := L^{H_1}$ and $K_2 = L^{H_2}$ are non-conjugate arithmetically equivalent number fields of degree 8 (one can achieve 7 using $H_1, H_2 \leq \operatorname{SL}_3(\mathbb{F}_2)$).

Lemma

Finite groups H_1 and H_2 occur as elements of a Gassmann triple (G, H_1, H_2) if and only if they have the same order statistics.

It follows that Gassmann equivalence does not imply isomorphism: consider $(\mathbb{Z}/p\mathbb{Z})^3$ and $H_3(\mathbb{F}_p) := \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 1 & 1 \end{pmatrix} \right\}$ for any prime $p \ge 3$, or $\langle 16, 3 \rangle$ and $\langle 16, 10 \rangle$, for example.

Gassmann triples in other contexts

Gassmann triples (G, H_1, H_2) arise in many contexts that involve potentially non-isomorphic objects with the same "zeta function":

- If $\pi: M \to M_0$ is a normal finite Riemannian covering with deck group G, then M/H_1 , and M/H_2 are isospectral (Sunada 1985).
- If Γ is a finite graph with $G = \operatorname{Aut}(\Gamma)$ then Γ/H_1 and Γ/H_2 are isospectral (Halbeisen-Hungerbühler 1995).
- If X/k is a projective curve with G = Aut(X), then X/H_1 and X/H_2 have isogenous Jacobians (Prasad-Rajan 2003).
- If $G = \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, then the modular curves X_{H_1} and X_{H_2} parameterizing elliptic curves with "level H_i -structure" have the same *L*-function.
- If $\pi: X \to Y$ is a Galois étale cover of k-varieties then X/H_1 and X/H_2 have isomorphic Chow motives (Arapura–Katz–McReynolds–Solapurkar 2019).

Unlike the number field case, non-trivial Gassmann triples may yield isomorphic objects, and zeta function equality does not always force Gassmann equivalence.

How strong is arithmetic equivalence?

Theorem (Perlis 1977)

Arithmetically equivalent number fields K_1 and K_2 have the same degree, discriminant, signature, roots of unity, normal closure, and normal core.

The analytic class number formula

$$\lim_{s \to 1+} (s-1)\zeta_{K_i}(s) = \frac{2^{r_1}(2\pi)^{r_2}h_{K_i}R_{K_i}}{\#\mu_{K_i}|D_{K_i}|^{1/2}}$$

implies $h_{K_1}R_{K_1} = h_{K_2}R_{K_2}$, but the class numbers h_{K_i} and regulators R_{K_i} may differ.

There is a bijection of the places of K_1 and K_2 that preserves residue fields, but it may not be possible for this bijection to also preserve ramification indices.

In particular, the adele rings \mathbb{A}_{K_1} and \mathbb{A}_{K_2} need not be isomorphic.

Local isomorphism

Definition

Two number fields are locally isomorphic if there is a bijection of places in which corresponding completions are isomorphic (this forces arithmetic equivalence).

Proposition (Iwasawa 1953)

Number fields K_1, K_2 are locally isomorphic if and only if they have isomorphic rings of adèles $\mathbb{A}_{K_1} \simeq \mathbb{A}_{K_2}$ (as topological rings and as $\mathbb{A}_{\mathbb{Q}}$ -algebras).

Proposition (Linowitz-McReynolds-Miller 2017)

Locally isomorphic number fields have isomorphic Brauer groups.

Locally isomorphic number fields may have distinct class numbers, as happens with $\mathbb{Q}(\sqrt[8]{-33})$ and $\mathbb{Q}(\sqrt[8]{-33 \cdot 16})$, with class numbers 256 and 128 (de Smit–Perlis, 1994).

Plan for the talk

- Define three stronger notions of Gassmann equivalence (\mathbb{Q}):
 - local integral equivalence (\mathbb{Z}_p)
 - integral equivalence (ℤ)
 - solvable equivalence ()
- Investigate their consequences beyond arithmetic equivalence $(\zeta_{K_1} = \zeta_{K_2})$:
 - class group isomorphism $(cl_{K_1} \simeq cl_{K_2})$
 - local isomorphism $(\mathbb{A}_{K_1} \simeq \mathbb{A}_{K_2})$
 - Galois group isomorphism $(\operatorname{Gal}(L/K_1) \simeq \operatorname{Gal}(L/K_2))$
- Construct explicit examples and counterexamples

Gassmann equivalence (\mathbb{Q})

Definition

Let $[H \setminus G]$ be the transitive (right) *G*-set consisting of (right) cosets of *H*. Let $\chi_H : G \to \mathbb{Z}$ be the permutation character $g \mapsto \#[H \setminus G]^g$ (the character of 1_H^G). Define $\chi_H(K) := \#[H \setminus G]^K$ for $K \leq G$ (note $\chi_H(K) \neq 0 \Leftrightarrow K \leq_G H$).

Proposition

For all $H_1, H_2 \leq G$ the following are equivalent:

- $#(H_1 \cap C) = #(H_2 \cap C)$ for all $C \in conj(G)$;
- there is a G-conjugacy preserving bijection $H_1 \longleftrightarrow H_2$;
- $\chi_{H_1}(K) = \chi_{H_2}(K)$ for all cyclic $K \leq G$;
- the G-sets $[H_1 \setminus G]$ and $[H_2 \setminus G]$ are isomorphic as K-sets for all cyclic $K \leq G$;
- $\mathbb{Q}[H_1 \setminus G] \simeq \mathbb{Q}[H_2 \setminus G]$ as $\mathbb{Q}[G]$ -modules.

One can replace "all $K \leq G$ " with "all $K \leq H_1$ and all $K \leq H_2$ ".

Local integral equivalence (\mathbb{Z}_p)

Definition

 $H_1, H_2 \leq G$ are locally integrally equivalent if $\mathbb{Z}_p[H_1 \setminus G] \simeq \mathbb{Z}_p[H_2 \setminus G]$ for all primes p.

Proposition

Call a group *p*-cyclic if its quotient by its *p*-core (largest normal *p*-subgroup) is cyclic. For all $H_1, H_2 \leq G$ the following are equivalent:

- there is a G-conjugacy class preserving bijection of p-cyclic $K \leq H_1, H_2$;
- $\chi_{H_1}(K) = \chi_{H_2}(K)$ for all *p*-cyclic $K \leq G$ (or all $K \leq H_1, H_2$);
- $\mathbb{F}_p[H_1 \setminus G] \simeq \mathbb{F}_p[H_2 \setminus G]$ as $\mathbb{F}_p[G]$ -modules;
- $\mathbb{Z}_p[H_1 \setminus G] \simeq \mathbb{Z}_p[H_2 \setminus G]$ as $\mathbb{Z}_p[G]$ -modules.

Theorem (Perlis 1978)

Locally integrally equivalent number fields have isomorphic class groups.

Integral equivalence (\mathbb{Z})

Definition

$H_1, H_2 \leq G$ are integrally equivalent if $\mathbb{Z}[H_1 \setminus G] \simeq \mathbb{Z}[H_2 \setminus G]$.

Let $H_1, H_2 \leq G$ have index n, let $\rho_1, \rho_2 \colon G \to S_n$ be the representations corresponding to the permutation modules $\mathbb{Z}[H_1 \setminus G]$, $\mathbb{Z}[H_2 \setminus G]$.

Fix an ordering of $[H_1 \setminus G]$ and $[H_2 \setminus G]$. We may represent elements of $\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[H_1 \setminus G], \mathbb{Z}[H_2 \setminus G]))$ by matrices $M \in \mathbb{Z}^{n \times n}$ that satisfy

$$M_{ij} = M_{\rho_1(g)(i), \rho_2(g)(j)} \qquad \text{for all } g \in G.$$

 (\mathbb{Q}) rational equivalence: $\exists M \det(M) \neq 0$

 (\mathbb{Z}_p) local integral equivalence: $\exists M_i \ \operatorname{gcd}(\det(M_1), \ldots, \det(M_r)) = 1$

 (\mathbb{Z}) integral equivalence: $\exists M \det(M) = \pm 1$

What we know about integral equivalence

Theorem (Prasad 2017)

Let $\pi: X \to Y$ be a Galois cover of nice curves over k with Galois group G. If $H_1, H_2 \leq G$ are integrally equivalent then $\operatorname{Jac}(X/H_1) \simeq \operatorname{Jac}(X/H_2)$.

Remark: Infinite families of non-isomorphic curves of low genus with isomorphic Jacobians were previously known (Howe 2005).

Essentially only one non-trivial example of integral equivalence is known: $G = PSL_2(\mathbb{F}_{29})$ with $H_1, H_2 \simeq A_5$ subgroups of index 203 (Scott 1992).

Scott proved this by writing down $M \in \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[H_1 \setminus G], \mathbb{Z}[H_2 \setminus G]) \subseteq \mathbb{Z}^{203 \times 203}$ with det M = 1 (most of the entries in M are zero, the nonzero entries are ± 1).

Similar triples exist for all primes $p \equiv \pm 29 \mod 120...$... but for p = 149 we need $M \in \mathbb{Z}^{27565 \times 27565}$ (and none of the simplest M work).

What we don't know about integral equivalence

Two questions about naturally arise from Prasad's 2017 result.

Question 1: Must integrally equivalent $H_1, H_2 \leq G$ be isomorphic?

We show that locally integrally equivalent $H_1, H_2 \leq G$ need not be, in general, but rationally equivalent subgroups of $PSL_2(\mathbb{F}_p)$ are isomorphic (S 2016), so this necessarily holds for Scott's example.

Question 2: Must integrally equivalent number fields be locally isomorphic?

We show that locally integrally equivalent number fields need not be, in general, but locally integrally equivalent subgroups of $PSL_2(\mathbb{F}_p)$ force local isomorphism, so this necessarily holds for Scott's example.

Remark: $PSL_2(\mathbb{F}_p)$ can be realized as a Galois group over \mathbb{Q} (Zywina 2015); this was proved for p = 29 in (Shih 1974).

Solvable equivalence (>)

Definition

 $H_1, H_2 \leq G$ are solvably equivalent if $\chi_{H_1}(K) = \chi_{H_2}(K)$ for all solvable $K \leq G$.

Solvable equivalence implies local integral equivalence (hence isomorphic class groups), and also guarantees that corresponding number fields are locally isomorphic.

Proposition

Number fields K_1, K_2 corresponding to solvably equivalent $H_1, H_2 \leq G$ are arithmetically equivalent, locally isomorphic, and have isomorphic class groups. In particular, there is a bijection of the places of K_1 and K_2 that preserves residue fields and ramification indices, and yields isomorphic completions.

Remark: Solvable equivalence is stronger than necessary.

Results

Proposition

There are infinitely many non-isomorphic pairs of degree-32 number fields arising from locally (but not globally) integrally equivalent $H_1, H_2 \leq G$ (and none of degree < 32).

Proposition

There are infinitely many non-isomorphic pairs of degree-96 number fields arising from solvably (but not integrally) equivalent $H_1, H_2 \leq G$ (and none of degree < 48).

Proposition

For all primes $p \equiv \pm 29 \mod 120$ the group $PSL_2(\mathbb{F}_p)$ contains a pair of non-conjugate solvably equivalent subgroups $H_1, H_2 \simeq A_5$.

 $H_1, H_2 \simeq A_5 \leq \text{PSL}_2(\mathbb{F}_p)$ are integrally equivalent for p = 29; this is open for p > 29.

A minimal example of local integral equivalence

An exhaustive search of the 11,759,892 groups of order less than 1024 finds 74 that contain non-conjugate locally integrally equivalent subgroups with trivial normal core. The smallest two have GAP ids $\langle 384, 18050 \rangle$ and $\langle 384, 18046 \rangle$, isomorphic to transitive permutation groups 32T9403 and 32T9408. Both are 2-extensions of $D_4 \times S_4$.

Example

The polynomials

$$\begin{aligned} x^{32} + 12x^{28} + 72x^{24} + 120x^{20} - 234x^{16} + 108x^{12} + 396x^8 - 432x^4 + 81, \\ x^{32} - 12x^{28} + 72x^{24} - 120x^{20} - 234x^{16} - 108x^{12} + 396x^8 + 432x^4 + 81 \end{aligned}$$

have the same splitting field, with Galois group G = 32T9403.

They define non-isomorphic number fields K_1, K_2 that are the fixed fields of locally integrally equivalent subgroups $H_1, H_2 \leq G$ that are both isomorphic to D_6 .

A minimal example of local integral equivalence

We can view each $M \in \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[H_1 \setminus G], \mathbb{Z}[H_2 \setminus G])$ as a 32×32 matrix with entries $a, b, c, \ldots, h \in \mathbb{Z}$, corresponding to the decomposition of G into double cosets H_1gH_2 . A (non-trivial) calculation finds that

$$\det M = -(2(b-c)^2 + 3(e-f)^2)^8 \cdot (2(a-d) + (e+f-2g))^6 \cdot (2(a+b+c+d) - (e+f+2g+4h))^3 \cdot (2(a-b-c+d) - (e+f+2g-4h))^3 \cdot (2(a-d) - 3(e+f-2g))^2 \cdot (2(a+b+c+d) + 3(e+f+2g+4h)) \cdot (2(a-b-c+d) + 3(e+f+2g-4h)).$$

One can choose $a, b, c, d, e, f, g, h \in \mathbb{Z}$ so that det $M = 2^{32}$, and so that det $M = 3^{12}$. H_1 and H_2 are not integrally equivalent because no $a, \ldots, h \in \mathbb{Z}$ make det $M = \pm 1$. This negatively answers Question 2.10 in (Guralnick–Weiss 1993).

$\begin{bmatrix} h & h & e & h & h & g & h & e & h & b \\ h & h & g & h & h & e & h & g & h & c \\ \end{bmatrix}$	cdhghhef	h e d b b a f	h g c a g g f h
g f h c g h e a b h h a f h h b h e h g h h f h h g h f h b	h d e h a g g	h g h e f h b	h f g h c c g d
$\begin{bmatrix} n & n & j & n & n & g & n & j & n & 0 \\ e & g & h & b & f & h & g & d & c & h \\ h & d & g & h & h & c & h & g & h & e \end{bmatrix}$	i e g h b e h h	c a g h h g h	g a h f h h d f
hhghhfhghc	c a h g h h f e	h f a b b d e	
	e h h b h h c c	h e h g g h e	a g f h g g f h
$ \begin{array}{c} d \ h \ c \ h \ a \ g \ a \ f \ h \ g \\ g \ e \ h \ c \ g \ h \ f \ d \ b \ h \end{array} $	n g f h c g h h	b d f h h e h	e a ĥ g h ĥ a g
$\begin{bmatrix} h & d & e & h & h & b & h & f & h & g \\ g & e & h & e & g & h & e & h & g & a \\ a & h & c & h & d & g & d & e & h & g \end{bmatrix}$	b f h f g h h	ghcdach	fhdbhhg
	f b h g c h h	f h g h h g a	g ĥ ĥ e a d ĥ c
$\begin{bmatrix} f & g & h & b & e & h & g & a & c & h \\ f & g & h & b & e & h & g & a & c & h \\ h & a & g & h & h & c & h & g & h & f \end{bmatrix}$	f f f h h h h	c d g h h g h	g d h e ĥ ĥ a e
h h e a h g h c a g c g d g c h b h e h	n e g a g f a d	f h g h h g h	b h h f h h h e
$ \begin{array}{c} h \ h \ g \ d \ h \ e \ h \ b \ a \ e \\ b \ f \ d \ e \ b \ h \ c \ h \ g \ h \\ c \ h \ g \ h \ h \ g \ h \ h \ g \ h \ h$	g e a f g d a	g h f h h e h	chhghhhg
$\begin{bmatrix} h & h & f & d & h & g & h & c & d & g \\ f & g & h & g & e & h & g & h & e & d \\ g & c & h & f & g & d & e & h & g & h \end{bmatrix}$	lcghgeĥĥ	f h b d a b h	ghachhhf
$\begin{bmatrix} g & c & h & f & g \\ f & b & h & g & e & a & g & h & f & h \\ b & e & a & f & b & h & c & h & g & h \end{bmatrix}$	n e b h g c h h	e h g h h g d	g h h f d a h c
$\begin{bmatrix} c & g & a & g & c & h & b & h & f & h \\ h & h & g & a & h & f & h & b & d & f \\ \end{array}$	h h g d h e f	a c h g g h e	hbehggch
	e n e y n n	y n c u u c n	

M :=

Locally integrally equivalent subgroups need not be isomorphic

Example

Let G be the symmetric group S_{21} and consider the following pair of subgroups:

$$\begin{split} H_1 &:= \left\langle \, (4,5)(6,15,7,14)(8,17,9,16)(10,19,11,18)(12,21,13,20), \\ &\quad (1,2)(3,5)(6,20,8,18)(7,21,9,19)(10,14,12,16)(11,15,13,17) \right\rangle, \\ H_2 &:= \left\langle \, (4,5)(6,16,8,14)(7,17,9,15)(10,20,12,18)(11,21,13,19), \\ &\quad (1,2)(3,5)(6,20,8,18)(7,21,9,19)(10,17,12,15)(11,16,13,14) \right\rangle. \end{split}$$

Then $\mathbb{Z}_p[H_1 \setminus G] \simeq \mathbb{Z}_p[H_2 \setminus G]$ for every prime p but $H_1 \not\simeq H_2$. Indeed, the GAP identifiers of H_1 and H_2 are $\langle 48, 12 \rangle$ and $\langle 48, 13 \rangle$.

This example negatively answers Question 2.11 in (Guralnick–Weiss 1993). It is the first of many examples that can be obtained by comparing \mathcal{P} -statistics, where \mathcal{P} is the set of finite groups that are *p*-cyclic for some prime *p*.

Local integral equivalence does not imply local isomorphism

Example

The group $G := A_4 \times S_5$ contains locally integrally equivalent $H_1, H_2 \simeq D_6$. Let L be the compositum of the splitting fields of the A_4 and S_5 polynomials $x^4 - 6x^2 - 8x + 60$ and $x^5 + 5x^3 + 10x - 2$, and let $K_1 := L^{H_1}$ and $K_2 := L^{H_2}$. Above the ramified prime 2 we have

$$\begin{aligned} & 2\mathcal{O}_{K_1} = \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_4 \mathfrak{p}_5^6 \mathfrak{p}_6^6 \mathfrak{p}_7^6 \mathfrak{p}_8^6 \mathfrak{p}_9^6 \mathfrak{p}_{10}^6 \mathfrak{p}_{11}^6 \mathfrak{p}_{12}^6 \mathfrak{p}_{13}^2 \mathfrak{p}_{13}^2 \mathfrak{p}_{14}^3 \mathfrak{p}_{15}^3 \mathfrak{p}_{16}^3 \mathfrak{p}_{18}^6 \mathfrak{p}_{19}^6 \mathfrak{p}_{20}^6, \\ & 2\mathcal{O}_{K_2} = \mathfrak{q}_1^2 \mathfrak{q}_2^2 \mathfrak{q}_3^2 \mathfrak{q}_4^2 \mathfrak{q}_5^3 \mathfrak{q}_6^3 \mathfrak{q}_7^3 \mathfrak{q}_8^3 \mathfrak{q}_9^6 \mathfrak{q}_{10}^6 \mathfrak{q}_{11}^6 \mathfrak{q}_{12}^6 \mathfrak{q}_{13} \mathfrak{q}_{14} \mathfrak{q}_{15}^6 \mathfrak{q}_{16}^6 \mathfrak{q}_{17}^6 \mathfrak{q}_{18}^6 \mathfrak{q}_{19}^6 \mathfrak{q}_{20}^6, \end{aligned}$$

which shows that $K_1 \otimes_{\mathbb{Q}} \mathbb{Q}_2 \not\simeq K_2 \otimes_{\mathbb{Q}} \mathbb{Q}_2$.

This example also shows that the sums of the ramification indices can differ even when the products do not, complementing the example in (Mantilla-Soler 2019).

An example of solvable equivalence

The group G = 16T1654 of order 5760 contains non-conjugate $H_1, H_2 \simeq A_5$ of index 96 such that every proper subgroup of H_1 is a proper subgroup of H_2 .

It is the Galois group of an extension of $\mathbb{Q}[T]$, so Hilbert irreducibility gives infinitely many examples of corresponding number fields, including the splitting field of

 $x^{16} - 2x^{15} + 3x^{14} - 16x^{13} + 18x^{12} - 10x^{10} + 40x^9 - 39x^8 + 54x^7 + 23x^6 + 16x^5 - 140x^4 - 188x^3 - 28x^2 + 104x - 4.$

Each $M \in \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[H_1 \setminus G], \mathbb{Z}[H_2 \setminus G])$ has entries $a, b, c, d, e \in \mathbb{Z}$ with

$$\det M = -(5a + 6b + 10c + 15d + 60e)(a - 6b - 10c + 3d + 12e)^5$$
$$(3a + 2b - 2c - 7d + 4e)^{15}(3a - 2b + 2c + d - 4e)^{30}(a + 2b - 2c + 3d - 4e)^{45}$$

No $a, b, c, d, e \in \mathbb{Z}$ yield det $M = \pm 1$, so H_1 and H_2 are not integrally equivalent. This example partially addresses Remark 4.3a in (Scott 1992) by providing a rank-5 example of locally isomorphic permutation modules that are not globally isomorphic (Scott proves a lower bound of 4 and an upper bound of 8 on the minimal rank).

Summary

subgroups $H_1, H_2 \leq G$

 (\mathbb{Q}) rational equivalence (\mathbb{Z}_p) local integral equivalence (\mathbb{Z}) integral equivalence (\checkmark) solvable equivalence

number fields $K_1, K_2 \leq L$

 $\begin{array}{l} (\zeta_K) \text{ arithmetic equivalence} \\ (\mathrm{cl}_K) \text{ class group isomorphism} \\ (\mathbb{A}_K) \text{ local isomorphism} \\ (\simeq) \operatorname{Gal}(L/K) \text{-isomorphism} \end{array}$

$$\begin{aligned} (\checkmark) \Rightarrow (\zeta_K) & (\mathbb{Z}) \Rightarrow (\\ (\checkmark) \Rightarrow (\mathrm{cl}_K) & (\mathbb{Z}) \Rightarrow (\\ (\checkmark) \Rightarrow (\mathbb{A}_K) & (\mathbb{Z}) ? (\\ (\checkmark) ? (\simeq) & (\mathbb{Z}) ? (\end{aligned}$$

$$\begin{aligned}
\zeta_K) & (\mathbb{Z}_p) \Rightarrow \\
cl_K) & (\mathbb{Z}_p) \Rightarrow \\
\mathbb{A}_K) & (\mathbb{Z}_p) \neq \\
\simeq) & (\mathbb{Z}_p) \neq
\end{aligned}$$

$$\begin{array}{ll} (\zeta_K) & (\mathbb{Q}) \Rightarrow (\zeta_K) \\ (cl_K) & (\mathbb{Q}) \not\Rightarrow (cl_K) \\ (\mathbb{A}_K) & (\mathbb{Q}) \not\Rightarrow (\mathbb{A}_K) \\ (\simeq) & (\mathbb{Q}) \not\Rightarrow (\simeq) \end{array}$$

$$\begin{array}{c} (\swarrow) \\ (\swarrow) \\ (\mathbb{Z}) \end{array} (\mathbb{Z}_p) \Longrightarrow (\mathbb{Q})$$