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Notation

A = Fq[T ] Z
F = Fq(T ) Q
F∞ = Fq((1/T )) R
C∞ = F̂∞ C
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Drinfeld modules

Let K be a field equipped with a homomorphism γ : A→ K . Let

K 〈x〉 :=

{
n∑

i=0

cix
qi

| ci ∈ K , n ≥ 0

}

be the set of Fq-linear polynomials. This is a non-commutative ring with usual
addition but multiplication given by substitution (f ∗ g)(x) := f (g(x)). The
multiplicative identity is f (x) = x .

Definition
A Drinfeld module of rank r over K is a ring homomorphism

φ : A −→ K 〈x〉, a 7−→ φa(x),

such that
φT (x) = γ(T )x + g1x

q + · · ·+ grx
qr

for some g1, . . . , gr ∈ C∞, gr 6= 0.

Computing endomorphism rings of Drinfeld modules 3 / 19



Drinfeld modules and lattices

Let Λ ⊂ C∞ be an A-lattice of rank r ≥ 1, i.e.,
Λ ∼= Ar and Λ ⊂ C∞ is discrete.

The Carlitz-Drinfeld exponential of Λ is

expΛ(x) = x
∏

06=λ∈Λ

(
1− x

λ

)
.

Then

expΛ(x + y) = expΛ(x) + expΛ(y).

expΛ(βx) = β expΛ(x) for all β ∈ Fq.

expΛ(ax) = φΛ
a (expΛ(x)) for some Drinfeld module φΛ of rank r .

Λ φΛ gives a bijection between the set of lattices of rank r in C∞ and the
set of Drinfeld modules of rank r over C∞.
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We get

0 // Λ //

λ7→aλ

��

C∞
z 7→az

��

expΛ // C∞

z 7→φΛ
a (z)

��

// 0

0 // Λ // C∞ expΛ

// C∞ // 0,

which should be compared with

0 // 2πiZ //

λ7→nλ

��

C

z 7→nz

��

ex // C×

z 7→zn

��

// 0

0 // 2πiZ // C
ex
// C× // 0.

Note that

φΛ[a] := ker(φΛ
a ) = {z ∈ C∞ | φΛ

a (z) = 0} ∼= Λ/aΛ ∼= (A/aA)r .
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Carlitz cyclotomic extensions

The Carlitz module ψT (x) = Tx + xq has rank 1.

expψ(x) = x +
∑
n≥1

xq
n

(T qn − T )(T qn − T q) · · · (T qn − T qn−1 )
.

Λψ = πCA; it is known that πC is transcendental over F .

Gal(F (ψ[a])/F ) ∼= (A/aA)×.

Let p ⊂ A be a maximal ideal. Denote the monic generator of p by p+. Then
p splits completely in F (ψ[a]) if and only if p+ ≡ 1 (mod a).

Example

Let a = T . Then F (ψ[T ]) is the splitting field of xT + xq = x(T + xq−1). In this
case, the previous theorem says that xq−1 + T has q − 1 distinct roots modulo p
if and only if the constant term of p+ is 1. For example, if q = 3 and p = T 2 + 1,
then

x2 + T = (x + (T + 1))(x − (T + 1)) mod p.

But if p = T 2 + T − 1, then x2 + T has no roots modulo p.
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Suppose φ is a Drinfeld module over F of rank r ≥ 2. For 0 6= n ∈ A, the splitting
field F (φ[n]) of φn(x) is a Galois extension of F , but generally F (φ[n])/F is not
abelian. The action of Gal(F (φ[n])/F ) on the roots of φn(x) commutes with the
action of A, so there is a natural injective homomorphism

Gal(F (φ[n])/F ) ↪→ AutA((A/nA)r ) ∼= GLr (A/nA).

This is usually an isomorphism.

Example

Let q = 5, φT (x) = Tx + Txq + Txq
2

+ xq
3

, and n = T . In this case,

Gal(F (φ[n])/F ) ∼= GL3(A/TA) ∼= GL3(F5).
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Non-abelian reciprocity

Theorem (Garai-P.)

Let φ be a Drinfeld module over F of rank r ≥ 2. Assume the characteristic of F
does not divide r . For each maximal ideal p ⊂ A where φ has good reduction,
there are two (effectively computable) elements a(p), b(p) ∈ A such that for any
n ∈ A not divisible by p we have

p splits completely in F (φ[n]) ⇐⇒ a(p) ≡ r (mod n) and b(p) ≡ 0 (mod n).

a(p) and b(p) depend only on φ and p, i.e., they do not depend on n.

Example

Let q = 5, φT (x) = Tx + Txq + Txq
2

+ xq
3

, and p = T 6 + 3T 5 + T 2 + 3T + 3.
In this case,

a(p) = 3T 2, b(p) = T − 1.

Hence p splits completely in F (φ[n]) if and only if n = T − 1.
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Endomorphism rings of Drinfeld modules

Definition
The endomorphism ring of a Drinfeld module φ over K is

EndK (φ) : = {u(x) ∈ K 〈x〉 | u(φa(x)) = φa(u(x)) for all a ∈ A}
= {u(x) ∈ K 〈x〉 | u(φT (x)) = φT (u(x))} .

Let p ⊂ A be a maximal ideal and let Fp := A/p. Let γ : A→ Fp be the natural
quotient homomorphism. Let φ be a Drinfeld module over Fp of rank r . Denote

E = EndFp
(φ).

π := xq
degT (p+) ∈ E ;

A[π] and E are A-orders in an “imaginary” extension of F of degree r ;

E/A[π] ∼= A/b1A× A/b2A× · · · × A/br−1A

for uniquely determined nonzero monic polynomials b1, . . . , br−1 ∈ A such
that

b1 | b2 | · · · | br−1.
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Theorem (Garai-P.)

For each 1 ≤ i ≤ r − 1 there is a monic polynomial fi (x) ∈ A[x ] of degree i such
that fi (π) ∈ biE . Moreover, if there is a monic polynomial g(x) ∈ A[x ] of degree i
and b ∈ A such that g(π) ∈ bE then b divides bi .

Proof.
The proof is based on the existence of a special basis of E as a free A-module:{

1,
f1(π)

b1
, . . . ,

fr−1(π)

br−1

}
where fi (x) ∈ A[x ] is monic and has degree i .
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Theorem 2 =⇒ Theorem 1

Suppose φ is the reduction at p of a Drinfeld module Φ over F . Let n ∈ A be a
polynomial not divisible by p. Then we have an isomorphism Φ[n] ∼= φ[n]
compatible with the action of the Frobenius at p on Φ[n] and the action of π on
φ[n]. Then it follows from the previous theorem that π acts as a scalar on φ[n] if
and only if n | b1. On the other hand, if π acts as a scalar on φ[n], then π acts as
1 if and only if its trace is congruent to r modulo n, assuming r is not divisible by
the characteristic of F . Thus, the previous theorem is a refinement of the
reciprocity theorem since it gives a Galois-theoretic interpretation of all bi ’s, not
just b1.
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Algorithm for computing E

It is more convenient to work in the twisted polynomial ring K{τ} ∼= K 〈x〉, which
is the ring of polynomials α0 + α1τ + · · ·+ αdτ

d , d ≥ 0, where multiplication
satisfies the commutation rule τα = αqτ for α ∈ K .

Step 1 : Let P(x) = x r + a1x
r−1 + · · ·+ ar ∈ A[x ] be the minimal polynomial of

π. Let d := degT (p). It is known that for 1 ≤ i ≤ r − 1 we have

degT (ai ) ≤ i
d

r
.

In particular, a1, . . . , ar−1 are uniquely determined by their residues modulo p.
Moreover, it is known that ar is a specific F×q -multiple of p+. The equation
P(π) = 0 implies that in Fp{τ} we have

γ(ai−1) = −coefficient of τd(r−i+1) in φai τ
d(r−i) + φai+1τ

d(r−i+1) + · · ·+ φar .

Thus, we can compute ai recursively using ar , . . . , ar−1.

Computing endomorphism rings of Drinfeld modules 12 / 19



Step 2 : Assume for simplicity that P(x) is separable. Then we can make a finite

list of possible (b1, . . . , br−1) because (b1 · · · br−1)2 divides the discriminant of
A[π]. (There are other restrictions: bi | bi+1; if i + j < r , then bibj | bi+j .)

Step 3 : For each possible (b1, . . . , br−1), check whether this is the actual index of
A[π] in E , i.e., if for all i we have fi (π) ∈ biE for some monic fi (x) ∈ A[x ] of
degree i . For this we can assume that the coefficients of fi (x) ∈ A[x ], as
polynomials in T , have degrees < degT (bi ). Thus, for each (b1, . . . , br−1) we
obtain a finite list of possible f1, . . . , fr−1.

Step 3.1 : Given a polynomial g(x) = x s + cs−1x
s−1 + · · ·+ c0, checking whether

g(π) ∈ bE can be done as follows. First, compute the residue of

τds + φcs−1τ
d(s−1) + · · ·+ φc0

modulo φb using the right division algorithm in Fp{τ}. If the residue is nonzero,
then g(π) 6∈ bE . If the residue is 0, then g(π) = uφb for an explicit u ∈ Fp{τ}
produced by the division algorithm. Now check if the commutation relation
uφT = φTu holds in Fp{τ} (this relation holds if and only if u ∈ E).
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Example

Let q = 5, p = T 6 + 3T 5 + T 2 + 3T + 3, and φ : A→ Fp{τ} be given by

φT = t + tτ + tτ 2 + τ 3,

where t denotes the image of T under the canonical reduction map A→ Fp. The
minimal polynomial of π is

P(x) = x3 + 2T 2x2 + (3T 4 + T 2 + 3T + 1)x + 4p

From this we compute that

disc(A[π]) = (T + 4)6(T 4 + 2T 3 + 4T 2 + 3T + 4).

Hence b1b2 divides (T + 4)3. We deduce that either b1 = T + 4 and
b2 = (T + 4)2, or b1 = 1 and b2 = (T + 4)n for some 0 ≤ n ≤ 3. Our algorithm
confirms that in fact b1 = T + 4 and b2 = (T + 4)2. Moreover, the corresponding
polynomials are f1(x) = x + 4 and f2(x) = (x + 4)2. An A-basis of E is given by

e1 = 1, e2 =
π + 4

T + 4
, e3 = e2

2 .

Finally, the element in Fp{τ} corresponding to e2 is

e2 = τ 3 + (2t5 + 3t4 + t + 1)τ 2 + (4t3 + 2t + 3)τ + t5 + 4t4 + 4t3 + 4t2 + 3.
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Matrix of the Frobenius automorphism

Multiplication by π induces an A-linear transformation of E . The matrix of this

transformation with respect to the basis
{

1, f1(π)
b1
, . . . , fr−1(π)

br−1

}
has the form

Π :=


∗ ∗ · · · ∗ ∗
b1 ∗ · · · ∗ ∗
0 b2

b1
∗ ∗ ∗

...
. . .

0 0 · · · br−1

br−2
∗

 . (1)

The entries of Π marked by ∗ depend explicitly on the coefficients of fi (x) and
P(x). (If E = A[π], then Π is simply the companion matrix of P(x).)
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Example

If r = 2 and q is odd, then Π :=

(
−a1/2 b1 · disc(E)
b1 −a1/2

)
.

Example

Let q = 5, p = T 6 + 3T 5 + T 2 + 3T + 3, and φ : A→ Fp{τ} be given by

φT = t + tτ + tτ 2 + τ 3,

where t denotes the image of T under the canonical reduction map A→ Fp. Then

Π =

 1 0 T 4 + T 2 + 2T + 1
T + 4 1 2T 3 + 2T 2 + 2T + 4

0 T + 4 3(T 2 + 1)

 ,
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Theorem (Garai-P.)

Let Φ be a Drinfeld module over F of rank r ≥ 2. Let p be a prime of good
reduction of φ, and let φ denote the reduction of Φ at p. Let n ∈ A be a nonzero
element not divisible by p. Suppose for every maximal ideal l ⊂ A dividing n the
Tate module Tl(φ) is a free E ⊗ Al-module of rank 1. Then Π, reduced modulo
n, represents the class of the Frobenius at p in Gal(F (Φ[n])/F ) ⊆ GLr (A/nA).

The assumption of the theorem is satisfied if E ⊗ Al is a Gorenstein ring.

E ⊗ Al is Gorenstein if one of the following holds:

r = 2.
E ⊗ Al = Al[π].
l does not divide the conductor of E .
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Example

Let q = 5, p be a maximal ideal, and φ : A→ Fp{τ} be given by

φT = t + tτ + tτ 2 + τ 3, t = γ(T ).

If p = T 6 + 3T 5 + T 2 + 3T + 3, then E ⊗ Al is Gorenstein for all l (in this case
the conductor of E is 1).
If p = T 6 + 4T 4 + 4T 2 + T + 1, then b1 = 1, b2 = T − 1, and E ⊗ Al is not
Gorenstein for l = T − 1.
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Asymptotic behavior of Frobenius indices

Let Φ be a Drinfeld module of rank r ≥ 3 over F . For a maximal ideal p ⊂ A
where Φ has good reduction φ, let E(p) = EndFp

(φ), and let b1,p, . . . , br−1,p be
the invariant factors of E(p)/A[πp]. Let B(p) be the integral closure of A in
F (πp). Assume EndF (Φ) = A.

(Garai-P.) For any fixed nonzero m, n ∈ A, the set of maximal ideals p such
that m | χ(E(p)/A[πp]) and n | χ(B(p)/E(p)) has positive density, where χ
denotes the Fitting ideal.

(Cojocaru-P.) If r = 2, then there is an explicit formula for the density of the
set {p | b1,p = 1}.
Are there such formulas for r ≥ 3?

(Cojocaru-P.) If r = 2, then degT disc(E(p))→∞ as degT (p)→∞.
Is the same true when r ≥ 3?
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