From the Birch and Swinnerton-Dyer conjecture to Nagao's conjecture

Seoyoung KIM

Queen's University, Ontario, Canada

Around Frobenius Distributions and Related Topics II 2021.06.28 This work is with **M Ram. Murty** (co-authored) and with **Andrew V. Sutherland**(contributed the appendix).

Table of Contents

- 1. Introduction
- 2. Cramér's estimation for $\zeta(s)$, and for $L_E(s)$
- 3. Applications : Implication on the BSD conjecture
- 4. Connection to Nagao's conjecture
- 5. Selberg class and beyond

Introduction

Riemann zeta function

The (Riemann) zeta function is a function of a complex variable which is defined to be

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
(1)

The zeta function converges when $\operatorname{Re}(s) > 1$. The functional equation

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s)\zeta(1-s) \tag{2}$$

shows that there are trivial zeros at s = -2, -4, -6...

The Riemann hypothesis for $\zeta(s)$

The nontrivial zeros of $\zeta(s)$ are all on the line $\operatorname{Re}(s) = \frac{1}{2}$.

Introduction

Riemann zeta function

The (Riemann) zeta function is a function of a complex variable which is defined to be

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
(1)

The zeta function converges when $\operatorname{Re}(s) > 1$. The functional equation

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s)\zeta(1-s) \tag{2}$$

shows that there are trivial zeros at s = -2, -4, -6...

The Riemann hypothesis for $\zeta(s)$

The nontrivial zeros of $\zeta(s)$ are all on the line $\operatorname{Re}(s) = \frac{1}{2}$.

Von Mangoldt function

The Von Mangoldt function is defined as

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k ;\\ 0 & \text{otherwise.} \end{cases}$$
(3)

It appears in the log derivative of the zeta function :

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$
(4)

We consider the sum

$$\psi(t) = \sum_{n \le t} \Lambda(n).$$
(5)

Von Mangoldt function

The Von Mangoldt function is defined as

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k ;\\ 0 & \text{otherwise.} \end{cases}$$
(3)

It appears in the log derivative of the zeta function :

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$
(4)

We consider the sum

$$\psi(t) = \sum_{n \le t} \Lambda(n).$$
(5)

Von Mangoldt function

The Von Mangoldt function is defined as

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k ;\\ 0 & \text{otherwise.} \end{cases}$$
(3)

It appears in the log derivative of the zeta function :

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$
(4)

We consider the sum

$$\psi(t) = \sum_{n \le t} \Lambda(n).$$
(5)

With

$$\psi(t) = \sum_{n \le t} \Lambda(n), \tag{6}$$

[Cramér, 1921]

When Riemann Hypothesis is true, we have

$$\lim_{x \to \infty} \frac{1}{\log x} \int_2^x \left(\frac{\psi(t) - t}{t}\right)^2 dt = \sum_{\rho} \left|\frac{n_{\rho}}{\rho}\right|^2,$$

where ρ is nontrivial distinct zeros of $\zeta(s)$, and n_{ρ} is the multiplicity of the corresponding zero ρ .

With

$$\psi(t) = \sum_{n \le t} \Lambda(n), \tag{6}$$

[Cramér, 1921]

When Riemann Hypothesis is true, we have

$$\lim_{x \to \infty} \frac{1}{\log x} \int_2^x \left(\frac{\psi(t) - t}{t}\right)^2 dt = \sum_{\rho} \left|\frac{n_{\rho}}{\rho}\right|^2,\tag{7}$$

where ρ is nontrivial distinct zeros of $\zeta(s)$, and n_{ρ} is the multiplicity of the corresponding zero ρ .

For L function of elliptic curves Definition

Let *E* be an elliptic curve over \mathbb{Q} with discriminant Δ_E and conductor N_E . For each prime $p \nmid \Delta_E$, we write the number of points of *E* (mod *p*) as

$$N_p \coloneqq \#E(\mathbb{F}_p) = p + 1 - a_p,\tag{8}$$

where a_p satisfies Hasse's inequality $|a_p| \leq 2\sqrt{p}$. For $p \mid \Delta_E$, we define $a_p = 0, -1$, or 1 (Depends on the reduction type).

$7 \,/\, 40$

For L function of elliptic curves Definition

Let *E* be an elliptic curve over \mathbb{Q} with discriminant Δ_E and conductor N_E . For each prime $p \nmid \Delta_E$, we write the number of points of *E* (mod *p*) as

$$N_p \coloneqq \#E(\mathbb{F}_p) = p + 1 - a_p,\tag{8}$$

where a_p satisfies Hasse's inequality $|a_p| \leq 2\sqrt{p}$. For $p \mid \Delta_E$, we define $a_p = 0, -1$, or 1 (Depends on the reduction type).

The *L*-function attached to *E*, denoted as $L_E(s)$ is then defined as an Euler product using this datum :

$$L_E(s) = \prod_{p \mid \Delta_E} \left(1 - \frac{a_p}{p^s} \right)^{-1} \prod_{p \nmid \Delta_E} \left(1 - \frac{a_p}{p^s} + \frac{p}{p^{2s}} \right)^{-1}, \quad (9)$$

which converges absolutely for $\operatorname{Re}(s) > 3/2$ by virtue of Hasse's inequality.

Expanding the Euler product into a Dirichlet series, we write

$$L_E(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$
(10)

The *L*-function attached to *E*, denoted as $L_E(s)$ is then defined as an Euler product using this datum :

$$L_E(s) = \prod_{p \mid \Delta_E} \left(1 - \frac{a_p}{p^s} \right)^{-1} \prod_{p \nmid \Delta_E} \left(1 - \frac{a_p}{p^s} + \frac{p}{p^{2s}} \right)^{-1}, \quad (9)$$

which converges absolutely for $\operatorname{Re}(s) > 3/2$ by virtue of Hasse's inequality.

Expanding the Euler product into a Dirichlet series, we write

$$L_E(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$
(10)

Riemann hypothesis for $L_E(s)$

By the work of Wiles, and Breuil, Conrad, Diamond, and Taylor, $L_E(s)$ extends to an entire function and satisfies a functional equation relating $L_E(s)$ to $L_E(2-s)$.

Riemann hypothesis for $L_E(s)$

All the nontrivial zeros of $L_E(s)$ lie on $\operatorname{Re}(s) = 1$.

We can do Cramér type estimation for $L_E(s)$!

9 / 40

Riemann hypothesis for $L_E(s)$

By the work of Wiles, and Breuil, Conrad, Diamond, and Taylor, $L_E(s)$ extends to an entire function and satisfies a functional equation relating $L_E(s)$ to $L_E(2-s)$.

Riemann hypothesis for $L_E(s)$

All the nontrivial zeros of $L_E(s)$ lie on $\operatorname{Re}(s) = 1$.

We can do Cramér type estimation for $L_E(s)$!

For L function of elliptic curves

Analogously, we consider the log derivative of $L_E(s)$:

$$-\frac{L'_E(s)}{L_E(s)} = \sum_{n=1}^{\infty} \frac{c_n \Lambda(n)}{n^s},$$

where

$$c_n = \begin{cases} \alpha_p^m + \beta_p^m, & \text{if } n = p^m \text{ and } p \nmid N, \\ a_p^m, & \text{if } n = p^m \text{ and } p \mid N, \\ 0, & \text{otherwise.} \end{cases}$$

Hence, when m = 1, c_n is the Frobenius trace a_p .

For L function of elliptic curves

Analogously, we consider the log derivative of $L_E(s)$:

$$-\frac{L'_E(s)}{L_E(s)} = \sum_{n=1}^{\infty} \frac{c_n \Lambda(n)}{n^s},$$

where

$$c_n = \begin{cases} \alpha_p^m + \beta_p^m, & \text{if } n = p^m \text{ and } p \nmid N, \\ a_p^m, & \text{if } n = p^m \text{ and } p \mid N, \\ 0, & \text{otherwise.} \end{cases}$$

Hence, when m = 1, c_n is the Frobenius trace a_p .

Cramér-type estimation for L function of elliptic curves

With

$$\psi_E(t) = \sum_{n \le t} c_n \Lambda(n), \tag{11}$$

[Kim-Murty, 2020]

Assuming the Riemann hypothesis for $L_E(s)$ is true, we obtain

$$\lim_{x \to \infty} \frac{1}{\log x} \int_2^x \frac{\psi_E^2(t)}{t^3} dt = \sum_{\rho} \left| \frac{n_{\rho}}{\rho} \right|^2, \tag{12}$$

where the sum is over all nontrivial distinct zeros ρ of $L_E(s)$, and n_{ρ} is the multiplicity of each ρ . Cramér-type estimation for L function of elliptic curves

With

$$\psi_E(t) = \sum_{n \le t} c_n \Lambda(n), \tag{11}$$

[Kim-Murty, 2020]

Assuming the Riemann hypothesis for $L_E(s)$ is true, we obtain

$$\lim_{x \to \infty} \frac{1}{\log x} \int_2^x \frac{\psi_E^2(t)}{t^3} dt = \sum_{\rho} \left| \frac{n_{\rho}}{\rho} \right|^2, \tag{12}$$

where the sum is over all nontrivial distinct zeros ρ of $L_E(s)$, and n_{ρ} is the multiplicity of each ρ .

Implications of the estimation?

The Birch and Swinnerton-Dyer conjecture

A version of BSD

For some constant C_E , we have

$$\prod_{\substack{p < x \\ p \nmid \Delta_E}} \frac{N_p}{p} \sim C_E (\log x)^r, \tag{13}$$

where r is the order of the zero of the L-function $L_E(s)$ of E at s = 1.

Furthermore, Birch and Swinnerton-Dyer conjectured that the order of the zero of the *L*-function $L_E(s)$ is equal to the rank of the Mordell-Weil group $E(\mathbb{Q})$.

The Birch and Swinnerton-Dyer conjecture

A version of BSD

For some constant C_E , we have

$$\prod_{\substack{p < x \\ p \nmid \Delta_E}} \frac{N_p}{p} \sim C_E (\log x)^r, \tag{13}$$

where r is the order of the zero of the L-function $L_E(s)$ of E at s = 1.

Furthermore, Birch and Swinnerton-Dyer conjectured that the order of the zero of the *L*-function $L_E(s)$ is equal to the rank of the Mordell-Weil group $E(\mathbb{Q})$.

$14 \, / \, 40$

The BSD conjecture is true if and only if

$$\sum_{\substack{p^k \leq x \\ p \nmid \Delta_E}} (\alpha_p^k + \beta_p^k) \log p = o(x \log x).$$

Whereas, the Riemann hypothesis for $L_E(s)$ is equivalent to

$$\sum_{\substack{p^k \le x \\ p \nmid \Delta_E}} (\alpha_p^k + \beta_p^k) \log p = \mathcal{O}(x(\log x)^2).$$

Hence, the BSD conjecture is much deeper than the Riemann hypothesis for elliptic curves according to our current knowledge (By Goldfeld, Kuo-Murty, and Conrad).

 $14 \, / \, 40$

The BSD conjecture is true if and only if

$$\sum_{\substack{p^k \le x \\ p \nmid \Delta_E}} (\alpha_p^k + \beta_p^k) \log p = o(x \log x).$$

Whereas, the Riemann hypothesis for $L_E(s)$ is equivalent to

$$\sum_{\substack{p^k \le x \\ p \nmid \Delta_E}} (\alpha_p^k + \beta_p^k) \log p = \mathcal{O}(x(\log x)^2).$$

Hence, the BSD conjecture is much deeper than the Riemann hypothesis for elliptic curves according to our current knowledge (By Goldfeld, Kuo-Murty, and Conrad).

 $14 \, / \, 40$

The BSD conjecture is true if and only if

$$\sum_{\substack{p^k \le x \\ p \nmid \Delta_E}} (\alpha_p^k + \beta_p^k) \log p = o(x \log x).$$

Whereas, the Riemann hypothesis for $L_E(s)$ is equivalent to

$$\sum_{\substack{p^k \le x \\ p \nmid \Delta_E}} (\alpha_p^k + \beta_p^k) \log p = \mathcal{O}(x(\log x)^2).$$

Hence, the BSD conjecture is much deeper than the Riemann hypothesis for elliptic curves according to our current knowledge (By Goldfeld, Kuo-Murty, and Conrad). By applying Perron's formula, and considering the subsequential limit, we obtain the following :

[Kim-Murty, 2020]

Assume the Riemann hypothesis is true for $L_E(s)$. Then there is a sequence $x_n \in [2^n, 2^{n+1}]$ such that

$$\lim_{n \to \infty} \frac{1}{\log x_n} \sum_{p < x_n} \frac{a_p \log p}{p} = -r + \frac{1}{2},$$
 (14)

where r is the order of $L_E(s)$ at s = 1.

16 / 40

[Kim-Murty, 2020]

If the limit

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p < x} \frac{a_p \log p}{p} \tag{15}$$

exists, then the Riemann hypothesis for $L_E(s)$ is true, and the limit is -r + 1/2 (Nagao-Mestre sum).

16 / 40

[Kim-Murty, 2020]

If the limit

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p < x} \frac{a_p \log p}{p} \tag{15}$$

exists, then the Riemann hypothesis for $L_E(s)$ is true, and the limit is -r + 1/2 (Nagao-Mestre sum).

[Kim-Murty, 2020]

If the limit

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p < x} \frac{a_p \log p}{p} \tag{16}$$

exists, then the BSD conjecture is true.

Experimental data by Andrew V. Sutherland

We define

$$S(x) := \frac{1}{\log x} \sum_{p \le x, \ p \nmid \Delta_E} \frac{a_p(E) \log p}{p}.$$

We expect this sum converges to $-r + \frac{1}{2}$ as $x \to \infty$.

By Andrew V. Sutherland

By Andrew V. Sutherland

By Andrew V. Sutherland

Sketch of the proof :

With

$$\psi_E(t) = \sum_{n \le t} c_n \Lambda(n), \qquad (17)$$

We want to prove

Assuming the Riemann hypothesis for $L_E(s)$ is true, we obtain

$$\lim_{x \to \infty} \frac{1}{\log x} \int_2^x \frac{\psi_E^2(t)}{t^3} dt = \sum_{\rho} \left| \frac{n_{\rho}}{\rho} \right|^2, \tag{18}$$

where the sum is over all nontrivial distinct zeros ρ of $L_E(s)$, and n_{ρ} is the multiplicity of each ρ .

Sketch of the proof :

With

$$\psi_E(t) = \sum_{n \le t} c_n \Lambda(n), \qquad (17)$$

We want to prove

Assuming the Riemann hypothesis for $L_E(s)$ is true, we obtain

$$\lim_{x \to \infty} \frac{1}{\log x} \int_2^x \frac{\psi_E^2(t)}{t^3} dt = \sum_{\rho} \left| \frac{n_{\rho}}{\rho} \right|^2, \tag{18}$$

where the sum is over all nontrivial distinct zeros ρ of $L_E(s)$, and n_{ρ} is the multiplicity of each ρ .

22 / 40

Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron's formula with careful error estimation, we obtain

$$\frac{\psi_E^2(t)}{t^3} = \frac{1}{t^3} \left(\sum_{\rho} n_{\rho} \frac{t^{\rho}}{\rho} + \mathcal{O}\left(\frac{t^2}{R}\right) \right)^2, \tag{19}$$

and by choosing sufficiently big R (size of the domain in Cauchy Residue theorem),

Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron's formula with careful error estimation, we obtain

$$\frac{\psi_E^2(t)}{t^3} = \frac{1}{t^3} \left(\sum_{\rho} n_{\rho} \frac{t^{\rho}}{\rho} + \mathcal{O}\left(\frac{t^2}{R}\right) \right)^2, \tag{19}$$

and by choosing sufficiently big R (size of the domain in Cauchy Residue theorem),

Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron's formula with careful error estimation, we obtain

$$\frac{\psi_E^2(t)}{t^3} = \frac{1}{t^3} \left(\sum_{\rho} n_{\rho} \frac{t^{\rho}}{\rho} + \mathcal{O}\left(\frac{t^2}{R}\right) \right)^2, \tag{19}$$

and by choosing sufficiently big R (size of the domain in Cauchy Residue theorem),

Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron's formula with careful error estimation, we obtain

$$\frac{\psi_E^2(t)}{t^3} = \frac{1}{t^3} \left(\sum_{\rho} n_{\rho} \frac{t^{\rho}}{\rho} + \mathcal{O}\left(\frac{t^2}{R}\right) \right)^2, \tag{19}$$

and by choosing sufficiently big R (size of the domain in Cauchy Residue theorem),

Sketch of the proof for (27)

$$\sum_{\rho} \frac{n_{\rho}}{\rho} \sum_{\rho' \neq 2-\rho} \frac{n_{\rho'}}{\rho'} \cdot \frac{x^{\rho+\rho'-2} - 2^{\rho+\rho'-2}}{\rho+\rho'-2}$$

can be estimated by considering the two separate cases :

$$|\rho+\rho'-2| \ge \eta \quad \text{and} \quad |\rho+\rho'-2| < \eta.$$

and by following the result on the number of zeros of $L_E(s)$ in a bounded region :

Theorem (Selberg)

The number of zeros such that $0 < \text{Im}(\rho) \le T$ of $L_E(s)$ satisfies

$$N_E(T) = \frac{\alpha_E}{\pi} T(\log T + c) + \mathcal{O}(\log T), \qquad (20)$$

where c is a constant, α_E is a constant which depends on E.

Sketch of the proof for (27)

$$\sum_{\rho} \frac{n_{\rho}}{\rho} \sum_{\rho' \neq 2-\rho} \frac{n_{\rho'}}{\rho'} \cdot \frac{x^{\rho+\rho'-2} - 2^{\rho+\rho'-2}}{\rho+\rho'-2}$$

can be estimated by considering the two separate cases :

$$|\rho + \rho' - 2| \ge \eta$$
 and $|\rho + \rho' - 2| < \eta$.

and by following the result on the number of zeros of $L_E(s)$ in a bounded region :

Theorem (Selberg)

The number of zeros such that $0 < \text{Im}(\rho) \le T$ of $L_E(s)$ satisfies

$$N_E(T) = \frac{\alpha_E}{\pi} T(\log T + c) + \mathcal{O}(\log T), \qquad (20)$$

where c is a constant, α_E is a constant which depends on E.

Sketch of the proof for (27)

$$\sum_{\rho} \frac{n_{\rho}}{\rho} \sum_{\rho' \neq 2-\rho} \frac{n_{\rho'}}{\rho'} \cdot \frac{x^{\rho+\rho'-2} - 2^{\rho+\rho'-2}}{\rho+\rho'-2}$$

can be estimated by considering the two separate cases :

$$|\rho + \rho' - 2| \ge \eta$$
 and $|\rho + \rho' - 2| < \eta$.

and by following the result on the number of zeros of $L_E(s)$ in a bounded region :

Theorem (Selberg)

The number of zeros such that $0 < \text{Im}(\rho) \le T$ of $L_E(s)$ satisfies

$$N_E(T) = \frac{\alpha_E}{\pi} T(\log T + c) + \mathcal{O}(\log T), \qquad (20)$$

where c is a constant, α_E is a constant which depends on E.

Nagao's conjecture

For an elliptic curve \mathcal{E} over $\mathbb{Q}(T)$, at each prime p and T = t

$$a_p(\tilde{\mathcal{E}}_t) = 1 - \# \tilde{\mathcal{E}}_t(\mathbb{F}_p) + p,$$

and define a fibral average of the trace of Frobenius for each p:

$$A_p(\mathcal{E}) = \frac{1}{p} \sum_{t=0}^{p-1} a_p(\tilde{\mathcal{E}}_t).$$

Nagao's Conjecture for elliptic surfaces over \mathbb{Q} (1997)

$$\lim_{X \to \infty} \frac{1}{X} \sum_{p \le X} -A_p(\mathcal{E}) \log p = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$

Nagao's conjecture

For an elliptic curve \mathcal{E} over $\mathbb{Q}(T)$, at each prime p and T = t

$$a_p(\tilde{\mathcal{E}}_t) = 1 - \# \tilde{\mathcal{E}}_t(\mathbb{F}_p) + p,$$

and define a fibral average of the trace of Frobenius for each \boldsymbol{p} :

$$A_p(\mathcal{E}) = \frac{1}{p} \sum_{t=0}^{p-1} a_p(\tilde{\mathcal{E}}_t).$$

Nagao's Conjecture for elliptic surfaces over \mathbb{Q} (1997)

$$\lim_{X \to \infty} \frac{1}{X} \sum_{p \le X} -A_p(\mathcal{E}) \log p = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$

Nagao's conjecture

For an elliptic curve \mathcal{E} over $\mathbb{Q}(T)$, at each prime p and T = t

$$a_p(\tilde{\mathcal{E}}_t) = 1 - \# \tilde{\mathcal{E}}_t(\mathbb{F}_p) + p,$$

and define a fibral average of the trace of Frobenius for each p :

$$A_p(\mathcal{E}) = \frac{1}{p} \sum_{t=0}^{p-1} a_p(\tilde{\mathcal{E}}_t).$$

Nagao's Conjecture for elliptic surfaces over \mathbb{Q} (1997)

$$\lim_{X \to \infty} \frac{1}{X} \sum_{p \le X} -A_p(\mathcal{E}) \log p = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$

FIGURE –
$$A_p(\mathcal{E})$$
 of $\mathcal{E}: y^2 = x^3 - 3t^4x - t^2(3+2t^8)$
 x axis : $A_p(\mathcal{E})$
 y axis : Frequency of $A_p(\mathcal{E})$ up to 500th prime p

It appears that the average of $A_p(\mathcal{E})$ is 0, indeed $\mathcal{E}(\mathbb{Q}(T))$ has rank 0.

Let $\mathcal{X} \to C$ be a surface with a fibration to a curve with generic fiber X/k(C). For each prime \mathfrak{p} , we have $\tilde{\mathcal{X}} \to \tilde{C}$ and define a fibral average of the trace of Frobenius :

$$A_{\mathfrak{p}}(\mathcal{X}) = \frac{1}{q_{\mathfrak{p}}} \sum_{c \in \tilde{C}(\mathbb{F}_{\mathfrak{p}})} a_{\mathfrak{p}}(\tilde{\mathcal{X}}_{c}), \quad q_{\mathfrak{p}} = \#\mathbb{F}_{\mathfrak{p}}.$$

Generalized Nagao conjecture (by Hindry-Pacheco, 2005)

$$\lim_{N \to \infty} \frac{1}{N} \sum_{q_{\mathfrak{p} \leq N}} -A_{\mathfrak{p}}(\mathcal{X}) \log q_{\mathfrak{p}} = \operatorname{rank} J_X(k(C)).$$

The generalized Nagao's conjecture enables us to consider surfaces with hyperelliptic fibers.

Let $\mathcal{X} \to C$ be a surface with a fibration to a curve with generic fiber X/k(C). For each prime \mathfrak{p} , we have $\tilde{\mathcal{X}} \to \tilde{C}$ and define a fibral average of the trace of Frobenius :

$$A_{\mathfrak{p}}(\mathcal{X}) = \frac{1}{q_{\mathfrak{p}}} \sum_{c \in \tilde{C}(\mathbb{F}_{\mathfrak{p}})} a_{\mathfrak{p}}(\tilde{\mathcal{X}}_{c}), \quad q_{\mathfrak{p}} = \#\mathbb{F}_{\mathfrak{p}}.$$

Generalized Nagao conjecture (by Hindry-Pacheco, 2005)

$$\lim_{N \to \infty} \frac{1}{N} \sum_{q_{\mathfrak{p} \le N}} -A_{\mathfrak{p}}(\mathcal{X}) \log q_{\mathfrak{p}} = \operatorname{rank} J_X(k(C)).$$

The generalized Nagao's conjecture enables us to consider surfaces with hyperelliptic fibers.

Let $\mathcal{X} \to C$ be a surface with a fibration to a curve with generic fiber X/k(C). For each prime \mathfrak{p} , we have $\tilde{\mathcal{X}} \to \tilde{C}$ and define a fibral average of the trace of Frobenius :

$$A_{\mathfrak{p}}(\mathcal{X}) = \frac{1}{q_{\mathfrak{p}}} \sum_{c \in \tilde{C}(\mathbb{F}_{\mathfrak{p}})} a_{\mathfrak{p}}(\tilde{\mathcal{X}}_{c}), \quad q_{\mathfrak{p}} = \#\mathbb{F}_{\mathfrak{p}}.$$

Generalized Nagao conjecture (by Hindry-Pacheco, 2005)

$$\lim_{N \to \infty} \frac{1}{N} \sum_{q_{\mathfrak{p} \le N}} -A_{\mathfrak{p}}(\mathcal{X}) \log q_{\mathfrak{p}} = \operatorname{rank} J_X(k(C)).$$

The generalized Nagao's conjecture enables us to consider surfaces with hyperelliptic fibers.

Let $\mathcal{X} \to C$ be a surface with a fibration to a curve with generic fiber X/k(C). For each prime \mathfrak{p} , we have $\tilde{\mathcal{X}} \to \tilde{C}$ and define a fibral average of the trace of Frobenius :

$$A_{\mathfrak{p}}(\mathcal{X}) = \frac{1}{q_{\mathfrak{p}}} \sum_{c \in \tilde{C}(\mathbb{F}_{\mathfrak{p}})} a_{\mathfrak{p}}(\tilde{\mathcal{X}}_{c}), \quad q_{\mathfrak{p}} = \#\mathbb{F}_{\mathfrak{p}}.$$

Generalized Nagao conjecture (by Hindry-Pacheco, 2005)

$$\lim_{N \to \infty} \frac{1}{N} \sum_{q_{\mathfrak{p} \le N}} -A_{\mathfrak{p}}(\mathcal{X}) \log q_{\mathfrak{p}} = \operatorname{rank} J_X(k(C)).$$

The generalized Nagao's conjecture enables us to consider surfaces with hyperelliptic fibers.

Rewriting the Nagao conjecture

Changing the order of the sum, Nagao's conjecture becomes

$$-\frac{1}{N}\sum_{p\leq N} A_p(\mathcal{E})\log p = -\sum_{p\leq X} \frac{1}{p}\sum_{t\leq p} a_p(\mathcal{E}_t)\log p$$
$$= -\sum_{t< X} \left(\sum_{t< p\leq X} \frac{a_p(\mathcal{E}_t)\log p}{p}\right)$$

[Kim-Murty, 2020]

If the limit

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p < x} \frac{a_p \log p}{p} \tag{21}$$

exists, then the Riemann hypothesis for $L_E(s)$ is true, and the limit is -r + 1/2.

Rewriting the Nagao conjecture

Changing the order of the sum, Nagao's conjecture becomes

$$-\frac{1}{N}\sum_{p\leq N}A_p(\mathcal{E})\log p = -\sum_{p\leq X}\frac{1}{p}\sum_{t\leq p}a_p(\mathcal{E}_t)\log p$$
$$= -\sum_{t\leq X}\left(\sum_{t\leq p\leq X}\frac{a_p(\mathcal{E}_t)\log p}{p}\right),$$

[Kim-Murty, 2020]

If the limit

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p < x} \frac{a_p \log p}{p} \tag{21}$$

exists, then the Riemann hypothesis for $L_E(s)$ is true, and the limit is -r + 1/2.

Rewriting the Nagao conjecture

Changing the order of the sum, Nagao's conjecture becomes

$$-\frac{1}{N}\sum_{p\leq N}A_p(\mathcal{E})\log p = -\sum_{p\leq X}\frac{1}{p}\sum_{t\leq p}a_p(\mathcal{E}_t)\log p$$
$$= -\sum_{t\leq X}\left(\sum_{t\leq p\leq X}\frac{a_p(\mathcal{E}_t)\log p}{p}\right),$$

[Kim-Murty, 2020]

If the limit

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p < x} \frac{a_p \log p}{p} \tag{21}$$

exists, then the Riemann hypothesis for $L_E(s)$ is true, and the limit is -r + 1/2.

Therefore, from our analysis, for a fixed t, the inner sum is (ignoring error terms)

$$\left(-r_t + \frac{1}{2}\right)\log\frac{X}{t},$$

for $r_t = \operatorname{rank} \mathcal{E}_t(\mathbb{Q})$. So one may expect

$$-\frac{1}{X}\sum_{p\leq X}A_p(\mathcal{E})\log p \sim \frac{1}{X}\sum_{t\leq X}\left(r_t - \frac{1}{2}\right)\log\frac{X}{t}.$$

This suggests the following (modified) form of Nagao's conjecture :

$$\lim_{X \to \infty} \frac{1}{X} \sum_{t \le X} \left(r_t - \frac{1}{2} \right) \log \frac{X}{t} = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$
(22)

Therefore, from our analysis, for a fixed t, the inner sum is (ignoring error terms)

$$\left(-r_t + \frac{1}{2}\right)\log\frac{X}{t},$$

for $r_t = \operatorname{rank} \ \mathcal{E}_t(\mathbb{Q})$. So one may expect

$$-\frac{1}{X}\sum_{p\leq X}A_p(\mathcal{E})\log p\sim \frac{1}{X}\sum_{t\leq X}\left(r_t-\frac{1}{2}\right)\log\frac{X}{t}.$$

This suggests the following (modified) form of Nagao's conjecture :

$$\lim_{X \to \infty} \frac{1}{X} \sum_{t \le X} \left(r_t - \frac{1}{2} \right) \log \frac{X}{t} = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$
(22)

Therefore, from our analysis, for a fixed t, the inner sum is (ignoring error terms)

$$\left(-r_t + \frac{1}{2}\right)\log\frac{X}{t},$$

for $r_t = \operatorname{rank} \ \mathcal{E}_t(\mathbb{Q})$. So one may expect

$$-\frac{1}{X}\sum_{p\leq X}A_p(\mathcal{E})\log p\sim \frac{1}{X}\sum_{t\leq X}\left(r_t-\frac{1}{2}\right)\log\frac{X}{t}.$$

This suggests the following (modified) form of Nagao's conjecture :

$$\lim_{X \to \infty} \frac{1}{X} \sum_{t \le X} \left(r_t - \frac{1}{2} \right) \log \frac{X}{t} = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$
(22)

Using Stirling's formula, we get

$$\frac{1}{X} \sum_{t \le X} r_t \sim \left(\operatorname{rank} \ \mathcal{E}(\mathbb{Q}(T)) + \frac{1}{2} \right)$$
(23)

as $X \to \infty$ (ignoring error terms).

Experimental results

Fermigier studied 66918 curves lying in 93 families having generic ranks between 0 to 4, and he found

$$\operatorname{rank} \mathcal{E}_t(\mathbb{Q}) = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) + \begin{cases} 0 & \text{with probability } 32\%, \\ 1 & \text{with probability } 48\%, \\ 2 & \text{with probability } 18\%, \\ 3 & \text{with probability } 2\%. \end{cases}$$

Hence, for every family of elliptic curves which is considered, Fermigier found the quantity

$$\frac{1}{2X} \sum_{|t| \le X} \operatorname{rank} \mathcal{E}_t(\mathbb{Q}) - \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) - \frac{1}{2}$$

ranges from 0.08 to 0.54 and averages around 0.35.

Experimental results

Fermigier studied 66918 curves lying in 93 families having generic ranks between 0 to 4, and he found

$$\operatorname{rank} \mathcal{E}_t(\mathbb{Q}) = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) + \begin{cases} 0 & \text{with probability } 32\%, \\ 1 & \text{with probability } 48\%, \\ 2 & \text{with probability } 18\%, \\ 3 & \text{with probability } 2\%. \end{cases}$$

Hence, for every family of elliptic curves which is considered, Fermigier found the quantity

$$\frac{1}{2X} \sum_{|t| \le X} \operatorname{rank} \mathcal{E}_t(\mathbb{Q}) - \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) - \frac{1}{2}$$

ranges from 0.08 to 0.54 and averages around 0.35.

Right conjecture?

Based on the heuristic results

$$\frac{1}{2X} \sum_{|t| \le X} \operatorname{rank} \, \mathcal{E}_t(\mathbb{Q}) - \operatorname{rank} \, \mathcal{E}(\mathbb{Q}(T)) - \frac{1}{2} \in [0.08, 0.54] \,,$$

we (originally) conjectured that

$$\left[\lim_{X \to \infty} \frac{1}{2X} \sum_{|t| \le X} \operatorname{rank} \mathcal{E}_t(\mathbb{Q}) - \frac{1}{2}\right] = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T))$$

as $X \to \infty$. Here $[\cdot]$ denotes the greatest integer function.

Right conjecture?

Based on the heuristic results

$$\frac{1}{2X} \sum_{|t| \le X} \operatorname{rank} \ \mathcal{E}_t(\mathbb{Q}) - \operatorname{rank} \ \mathcal{E}(\mathbb{Q}(T)) - \frac{1}{2} \in [0.08, 0.54],$$

we (originally) conjectured that

$$\left[\lim_{X\to\infty}\frac{1}{2X}\sum_{|t|\leq X}\mathrm{rank}\ \mathcal{E}_t(\mathbb{Q})-\frac{1}{2}\right]=\mathrm{rank}\ \mathcal{E}(\mathbb{Q}(T))$$

as $X \to \infty$. Here $[\cdot]$ denotes the greatest integer function.

Interesting example

Recall the functional equation of $L_E(s)$: For E/\mathbb{Q} , we have

$$\Lambda_E(2-s) = W(E)\Lambda_E(s),$$

where $\Lambda_E(s) = N^{s/2}(2\pi)^{-s}\Gamma(s)L_E(s)$, and $W(E) \in \{\pm 1\}$ is the root number of E. Then it is conjectured that

$$W(E) = (-1)^{\operatorname{rank} E(\mathbb{Q})}$$
 (Parity conjecture). (24)

Silverman suggested the following example of Rizzo :

Consider $\mathcal{E}: y^2 = x^3 + Tx^2 - (T+3)x + 1$, then $j(T) = 256(T^2 + 3T + 9)$ and it is an elliptic curve defined over $\mathbb{Q}(T)$ which has rank $\mathcal{E}(\mathbb{Q}(T)) = 1$, while the root number of each fiber

$$W(\mathcal{E}_t) = (-1)^{\operatorname{rank} \mathcal{E}_t(\mathbb{Q})} = -1, \text{ for every } t \in \mathbb{Z}.$$

Interesting example

Recall the functional equation of $L_E(s)$: For E/\mathbb{Q} , we have

$$\Lambda_E(2-s) = W(E)\Lambda_E(s),$$

where $\Lambda_E(s) = N^{s/2} (2\pi)^{-s} \Gamma(s) L_E(s)$, and $W(E) \in \{\pm 1\}$ is the root number of E. Then it is conjectured that

$$W(E) = (-1)^{\operatorname{rank} E(\mathbb{Q})}$$
 (Parity conjecture). (24)

Silverman suggested the following example of Rizzo :

Consider $\mathcal{E}: y^2 = x^3 + Tx^2 - (T+3)x + 1$, then $j(T) = 256(T^2 + 3T + 9)$ and it is an elliptic curve defined over $\mathbb{Q}(T)$ which has rank $\mathcal{E}(\mathbb{Q}(T)) = 1$, while the root number of each fiber

$$W(\mathcal{E}_t) = (-1)^{\operatorname{rank} \mathcal{E}_t(\mathbb{Q})} = -1, \text{ for every } t \in \mathbb{Z}.$$

Interesting example

Recall the functional equation of $L_E(s)$: For E/\mathbb{Q} , we have

$$\Lambda_E(2-s) = W(E)\Lambda_E(s),$$

where $\Lambda_E(s) = N^{s/2}(2\pi)^{-s}\Gamma(s)L_E(s)$, and $W(E) \in \{\pm 1\}$ is the root number of E. Then it is conjectured that

$$W(E) = (-1)^{\operatorname{rank} E(\mathbb{Q})} \quad (\text{Parity conjecture}). \tag{24}$$

Silverman suggested the following example of Rizzo :

Consider $\mathcal{E}: y^2 = x^3 + Tx^2 - (T+3)x + 1$, then $j(T) = 256(T^2 + 3T + 9)$ and it is an elliptic curve defined over $\mathbb{Q}(T)$ which has rank $\mathcal{E}(\mathbb{Q}(T)) = 1$, while the root number of each fiber

$$W(\mathcal{E}_t) = (-1)^{\operatorname{rank} \mathcal{E}_t(\mathbb{Q})} = -1, \text{ for every } t \in \mathbb{Z}.$$

For
$$\mathcal{E}: y^2 = x^3 + Tx^2 - (T+3)x + 1$$
, with the root number
 $W(\mathcal{E}_t) = (-1)^{\operatorname{rank} \mathcal{E}_t(\mathbb{Q})} = -1$, for every $t \in \mathbb{Z}$,

via the specialization theorem, one cannot expect that the rank would jump by 2 very often. and cannot jump by 1 by the sign of the functional equation. Hence, we expect

$$\lim_{X \to \infty} \frac{1}{2X} \sum_{|t| \le X} \operatorname{rank} \mathcal{E}_t(\mathbb{Q}) = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$

For
$$\mathcal{E}: y^2 = x^3 + Tx^2 - (T+3)x + 1$$
, with the root number

$$W(\mathcal{E}_t) = (-1)^{\operatorname{rank} \mathcal{E}_t(\mathbb{Q})} = -1, \text{ for every } t \in \mathbb{Z},$$

via the specialization theorem, one cannot expect that the rank would jump by 2 very often. and cannot jump by 1 by the sign of the functional equation. Hence, we expect

$$\lim_{X \to \infty} \frac{1}{2X} \sum_{|t| \le X} \operatorname{rank} \mathcal{E}_t(\mathbb{Q}) = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$

For
$$\mathcal{E}: y^2 = x^3 + Tx^2 - (T+3)x + 1$$
, with the root number

$$W(\mathcal{E}_t) = (-1)^{\operatorname{rank} \mathcal{E}_t(\mathbb{Q})} = -1, \text{ for every } t \in \mathbb{Z},$$

via the specialization theorem, one cannot expect that the rank would jump by 2 very often. and cannot jump by 1 by the sign of the functional equation. Hence, we expect

$$\lim_{X \to \infty} \frac{1}{2X} \sum_{|t| \le X} \operatorname{rank} \mathcal{E}_t(\mathbb{Q}) = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)).$$

Hence, there would not be extra 1/2 coming from the "fact" that half of the fibers have the wrong negative sign (root number) in their functional equation. Hence, we need to reformulate

$$\frac{1}{2X} \sum_{|t| < X} \operatorname{rank} \mathcal{E}_t(\mathbb{Q}) \to \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) + S(E)$$

as $X \to \infty$, and S(E) is some sort of average of the signs appearing in functional equations of the fibers.

Conjecture by Kim and Murty

For $r_t = \operatorname{rank} \mathcal{E}_t(\mathbb{Q})$, we conjecture : define

$$\mathcal{T} := \left\{ t \in \mathbb{Z} : W(\mathcal{E}_t) = (-1)^{\operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) + 1} \right\}.$$
 (25)

Then we have

$$\lim_{X \to \infty} \frac{1}{2X} \sum_{|t| \le X} r_t = \operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) + \delta(\mathcal{T})$$
(26)

where $\delta(\mathcal{T})$ is the natural density of \mathcal{T} as a subset of \mathbb{Z} .

What is known?

Assume that the limit

$$\lim_{X \to \infty} \frac{1}{2X} \sum_{|t| \le X} r_t$$

exists. Then the parity conjecture (for each fiber of \mathcal{E}) implies that the Conjecture is true modulo 2.

Selberg Class

The Selberg class S consists of complex variable functions F(s) satisfying the following properties :

- 1. For $\Re(s) > 1$, we can write $F(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ with $a_1 = 1$.
- 2. For some integer $m \ge 0$, $(s-1)^m F(s)$ extends to an entire function of finite order.
- 3. There are numbers Q > 0, $\alpha_i > 0$, $r_i \in \mathbb{C}$ with $\Re(r_i) \ge 0$ such that

$$\Phi(s) = Q^s \prod_{i=1}^{\infty} \Gamma(\alpha_i s + r_i) F(s)$$

which satisfies a functional equation $\Phi(s) = w\overline{\Phi}(1-s)$ with a complex number |w| = 1 and $\overline{\Phi}(s) \coloneqq \overline{\Phi(\overline{s})}$.

- 4. There exists an Euler product $F(s) = \prod_{p} F_{p}(s)$ for $\Re(s) > 1$.
- 5. For any fixed $\epsilon > 0$, $a_n = \mathcal{O}_{\epsilon}(n^{\epsilon})$.

Examples

There are well-known examples of elements in S.

- 1. The Riemann zeta function $\zeta(s) \in \mathbb{S}$.
- 2. Dirichlet L functions $L(s, \chi)$ and their vertical shifts $L(s + i\theta, \chi)$ are in S.
- 3. For a number field K, the Dedekind zeta function $\zeta_K(s)$ is in S.
- 4. For a holomorphic newform f, the associated *L*-function L(s, f) is in S.
A generalization for the Selberg class

We can extend the previous theorem to L-functions in the Selberg class. Let $F(s) \in \mathbb{S}$ and write

$$-\frac{F'}{F}(s) = \sum_{n=1}^{\infty} \Lambda_F(n) n^{-s} \text{ and } \psi_F(t) \coloneqq \sum_{n \le t} \Lambda_F(n).$$

A generalization

Assuming the Riemann hypothesis, if it can be formulated, for F(s) is true, we obtain

$$\lim_{x \to \infty} \frac{1}{\log x} \int_2^x \frac{\psi_F^2(t)}{t^2} dt = \sum_{\rho} \left| \frac{n_{\rho}}{\rho} \right|^2, \tag{27}$$

where the sum is over all nontrivial distinct zeros ρ of F(s), and n_{ρ} is the multiplicity of each ρ .

Hence, if we write r as the order of F(s) at $s = \frac{1}{2}$, we expect

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p < x} \frac{\Lambda_F(p)}{p} = -r + A,$$

where A is a constant. We (conjecturally) guess that $A = \frac{1}{2}$ as well for a primitive $F \in S$ by the conjectural theory of the Rankin-Selberg convolution for the Selberg class S.

Thank you for your attention!

Hence, if we write r as the order of F(s) at $s = \frac{1}{2}$, we expect

$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p < x} \frac{\Lambda_F(p)}{p} = -r + A,$$

where A is a constant. We (conjecturally) guess that $A = \frac{1}{2}$ as well for a primitive $F \in \mathbb{S}$ by the conjectural theory of the Rankin-Selberg convolution for the Selberg class S.

Thank you for your attention!