From the Birch and Swinnerton-Dyer conjecture to Nagao's conjecture

Seoyoung Kim

Queen's University, Ontario, Canada

Around Frobenius Distributions and Related Topics II 2021.06.28

This work is
with M Ram. Murty (co-authored) and with Andrew V. Sutherland(contributed the appendix).

Table of Contents

1. Introduction
2. Cramér's estimation for $\zeta(s)$, and for $L_{E}(s)$
3. Applications : Implication on the BSD conjecture
4. Connection to Nagao's conjecture
5. Selberg class and beyond

Introduction

Riemann zeta function

The (Riemann) zeta function is a function of a complex variable which is defined to be

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} . \tag{1}
\end{equation*}
$$

The zeta function converges when $\operatorname{Re}(s)>1$. The functional
equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

shows that there are trivial zeros at $s=-2,-4,-6 \ldots$
\square

Introduction

Riemann zeta function

The (Riemann) zeta function is a function of a complex variable which is defined to be

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

The zeta function converges when $\operatorname{Re}(s)>1$. The functional equation

$$
\begin{equation*}
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \tag{2}
\end{equation*}
$$

shows that there are trivial zeros at $s=-2,-4,-6 \ldots$.

The Riemann hypothesis for $\zeta(s)$

The nontrivial zeros of $\zeta(s)$ are all on the line $\operatorname{Re}(s)=\frac{1}{2}$.

Von Mangoldt function

The Von Mangoldt function is defined as

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

It appears in the log derivative of the zeta function

Von Mangoldt function

The Von Mangoldt function is defined as

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

It appears in the log derivative of the zeta function :

$$
\begin{equation*}
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}} \tag{4}
\end{equation*}
$$

We consider the sum

Von Mangoldt function

The Von Mangoldt function is defined as

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

It appears in the log derivative of the zeta function :

$$
\begin{equation*}
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}} \tag{4}
\end{equation*}
$$

We consider the sum

$$
\begin{equation*}
\psi(t)=\sum_{n \leq t} \Lambda(n) \tag{5}
\end{equation*}
$$

With

$$
\begin{equation*}
\psi(t)=\sum_{n \leq t} \Lambda(n) \tag{6}
\end{equation*}
$$

[Cramér, 1921]
 When Riemann H_{y} pothesis is true, we have

With

$$
\begin{equation*}
\psi(t)=\sum_{n \leq t} \Lambda(n) \tag{6}
\end{equation*}
$$

[Cramér, 1921]

When Riemann Hypothesis is true, we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \int_{2}^{x}\left(\frac{\psi(t)-t}{t}\right)^{2} d t=\sum_{\rho}\left|\frac{n_{\rho}}{\rho}\right|^{2} \tag{7}
\end{equation*}
$$

where ρ is nontrivial distinct zeros of $\zeta(s)$, and n_{ρ} is the multiplicity of the corresponding zero ρ.

For L function of elliptic curves

Definition

Let E be an elliptic curve over \mathbb{Q} with discriminant Δ_{E} and conductor N_{E}. For each prime $p \nmid \Delta_{E}$, we write the number of points of $E(\bmod p)$ as

$$
N_{p}:=\# E\left(\mathbb{F}_{p}\right)=p+1-a_{p},
$$

where a_{p} satisfies Hasse's inequality $\left|a_{p}\right| \leq 2 \sqrt{p}$. For $p \mid \Delta_{E}$, we define $a_{p}=0,-1$, or 1 (Depends on the reduction type).

For L function of elliptic curves

Definition

Let E be an elliptic curve over \mathbb{Q} with discriminant Δ_{E} and conductor N_{E}. For each prime $p \nmid \Delta_{E}$, we write the number of points of $E(\bmod p)$ as

$$
\begin{equation*}
N_{p}:=\# E\left(\mathbb{F}_{p}\right)=p+1-a_{p}, \tag{8}
\end{equation*}
$$

where a_{p} satisfies Hasse's inequality $\left|a_{p}\right| \leq 2 \sqrt{p}$. For $p \mid \Delta_{E}$, we define $a_{p}=0,-1$, or 1 (Depends on the reduction type).

The L-function attached to E, denoted as $L_{E}(s)$ is then defined as an Euler product using this datum :

$$
\begin{equation*}
L_{E}(s)=\prod_{p \mid \Delta_{E}}\left(1-\frac{a_{p}}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta_{E}}\left(1-\frac{a_{p}}{p^{s}}+\frac{p}{p^{2 s}}\right)^{-1} \tag{9}
\end{equation*}
$$

which converges absolutely for $\operatorname{Re}(s)>3 / 2$ by virtue of Hasse's inequality.
Expanding the Euler product into a Dirichlet series, we write

The L-function attached to E, denoted as $L_{E}(s)$ is then defined as an Euler product using this datum :

$$
\begin{equation*}
L_{E}(s)=\prod_{p \mid \Delta_{E}}\left(1-\frac{a_{p}}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta_{E}}\left(1-\frac{a_{p}}{p^{s}}+\frac{p}{p^{2 s}}\right)^{-1} \tag{9}
\end{equation*}
$$

which converges absolutely for $\operatorname{Re}(s)>3 / 2$ by virtue of Hasse's inequality.
Expanding the Euler product into a Dirichlet series, we write

$$
\begin{equation*}
L_{E}(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \tag{10}
\end{equation*}
$$

Riemann hypothesis for $L_{E}(s)$

By the work of Wiles, and Breuil, Conrad, Diamond, and Taylor, $L_{E}(s)$ extends to an entire function and satisfies a functional equation relating $L_{E}(s)$ to $L_{E}(2-s)$.

All the nontrivial zeros of $L_{E}(s)$ lie on $\operatorname{Re}(s)=1$ We can do Cramér type estimation for $L_{E}(s)$!

Riemann hypothesis for $L_{E}(s)$

By the work of Wiles, and Breuil, Conrad, Diamond, and Taylor, $L_{E}(s)$ extends to an entire function and satisfies a functional equation relating $L_{E}(s)$ to $L_{E}(2-s)$.

Riemann hypothesis for $L_{E}(s)$
All the nontrivial zeros of $L_{E}(s)$ lie on $\operatorname{Re}(s)=1$.
We can do Cramér type estimation for $L_{E}(s)$!

For L function of elliptic curves

Analogously, we consider the \log derivative of $L_{E}(s)$:

$$
-\frac{L_{E}^{\prime}(s)}{L_{E}(s)}=\sum_{n=1}^{\infty} \frac{c_{n} \Lambda(n)}{n^{s}}
$$

where

Hence, when $m=1, c_{n}$ is the Frobenius trace a_{p}.

For L function of elliptic curves

Analogously, we consider the \log derivative of $L_{E}(s)$:

$$
-\frac{L_{E}^{\prime}(s)}{L_{E}(s)}=\sum_{n=1}^{\infty} \frac{c_{n} \Lambda(n)}{n^{s}}
$$

where

$$
c_{n}= \begin{cases}\alpha_{p}^{m}+\beta_{p}^{m}, & \text { if } n=p^{m} \text { and } p \nmid N, \\ a_{p}^{m}, & \text { if } n=p^{m} \text { and } p \mid N, \\ 0, & \text { otherwise. }\end{cases}
$$

Hence, when $m=1, c_{n}$ is the Frobenius trace a_{p}.

Cramér-type estimation for L function of elliptic curves
With

$$
\begin{equation*}
\psi_{E}(t)=\sum_{n \leq t} c_{n} \Lambda(n), \tag{11}
\end{equation*}
$$

[Kim-Murty, 2020]
Assuming the Riemann hypothesis for $L_{E}(s)$ is true, we obtain

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \int_{2}^{x} \frac{\psi_{E}^{2}(t)}{t^{3}} d t=\sum_{\rho}\left|\frac{n_{\rho}}{\rho}\right|^{2} \tag{12}
\end{equation*}
$$

where the sum is over all nontrivial distinct zeros ρ of $L_{E}(s)$, and n_{ρ} is the multiplicity of each ρ.

Cramér-type estimation for L function of elliptic curves
With

$$
\begin{equation*}
\psi_{E}(t)=\sum_{n \leq t} c_{n} \Lambda(n), \tag{11}
\end{equation*}
$$

[Kim-Murty, 2020]

Assuming the Riemann hypothesis for $L_{E}(s)$ is true, we obtain

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \int_{2}^{x} \frac{\psi_{E}^{2}(t)}{t^{3}} d t=\sum_{\rho}\left|\frac{n_{\rho}}{\rho}\right|^{2}, \tag{12}
\end{equation*}
$$

where the sum is over all nontrivial distinct zeros ρ of $L_{E}(s)$, and n_{ρ} is the multiplicity of each ρ.

Implications of the estimation?

The Birch and Swinnerton-Dyer conjecture

A version of BSD
For some constant C_{E}, we have

$$
\begin{equation*}
\prod_{\substack{p<x \\ p \nmid \Delta_{E}}} \frac{N_{p}}{p} \sim C_{E}(\log x)^{r}, \tag{13}
\end{equation*}
$$

where r is the order of the zero of the L-function $L_{E}(s)$ of E at $s=1$.

Furthermore, Birch and Swinnerton-Dyer conjectured that the order of the zero of the L-function $L_{E}(s)$ is equal to the rank of the Mordell-Weil group $E(\mathbb{Q})$

The Birch and Swinnerton-Dyer conjecture

A version of BSD

For some constant C_{E}, we have

$$
\begin{equation*}
\prod_{\substack{p<x \\ p \nmid \Delta_{E}}} \frac{N_{p}}{p} \sim C_{E}(\log x)^{r}, \tag{13}
\end{equation*}
$$

where r is the order of the zero of the L-function $L_{E}(s)$ of E at $s=1$.

Furthermore, Birch and Swinnerton-Dyer conjectured that the order of the zero of the L-function $L_{E}(s)$ is equal to the rank of the Mordell-Weil group $E(\mathbb{Q})$.

The BSD conjecture is true if and only if

$$
\sum_{\substack{p^{k} \leq x \\ p \nmid \Delta_{E}}}\left(\alpha_{p}^{k}+\beta_{p}^{k}\right) \log p=o(x \log x) .
$$

Whereas, the Riemann hypothesis for $L_{E}(s)$ is equivalent to

Hence, the BSD conjecture is much deeper than the Riemann hypothesis for elliptic curves according to our current knowledge (By Goldfeld, Kuo-Murty, and Conrad).

The BSD conjecture is true if and only if

$$
\sum_{\substack{p^{k} \leq x \\ p \nmid \Delta_{E}}}\left(\alpha_{p}^{k}+\beta_{p}^{k}\right) \log p=o(x \log x) .
$$

Whereas, the Riemann hypothesis for $L_{E}(s)$ is equivalent to

$$
\sum_{\substack{p^{k} \leq x \\ p \nmid \Delta_{E}}}\left(\alpha_{p}^{k}+\beta_{p}^{k}\right) \log p=\mathcal{O}\left(x(\log x)^{2}\right) .
$$

Hence, the BSD conjecture is much deeper than the Riemann hypothesis for elliptic curves according to our current knowledge (By Goldfeld, Kuo-Murty, and Conrad).

The BSD conjecture is true if and only if

$$
\sum_{\substack{p^{k} \leq x \\ p \nmid \Delta_{E}}}\left(\alpha_{p}^{k}+\beta_{p}^{k}\right) \log p=o(x \log x) .
$$

Whereas, the Riemann hypothesis for $L_{E}(s)$ is equivalent to

$$
\sum_{\substack{p^{k} \leq x \\ p \nmid \Delta_{E}}}\left(\alpha_{p}^{k}+\beta_{p}^{k}\right) \log p=\mathcal{O}\left(x(\log x)^{2}\right) .
$$

Hence, the BSD conjecture is much deeper than the Riemann hypothesis for elliptic curves according to our current knowledge (By Goldfeld, Kuo-Murty, and Conrad).

By applying Perron's formula, and considering the subsequential limit, we obtain the following :

[Kim-Murty, 2020]

Assume the Riemann hypothesis is true for $L_{E}(s)$. Then there is a sequence $x_{n} \in\left[2^{n}, 2^{n+1}\right]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\log x_{n}} \sum_{p<x_{n}} \frac{a_{p} \log p}{p}=-r+\frac{1}{2} \tag{14}
\end{equation*}
$$

where r is the order of $L_{E}(s)$ at $s=1$.
[Kim-Murty, 2020]
If the limit

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{p<x} \frac{a_{p} \log p}{p} \tag{15}
\end{equation*}
$$

exists, then the Riemann hypothesis for $L_{E}(s)$ is true, and the limit is $-r+1 / 2$ (Nagao-Mestre sum).
[Kim-Murty, 2020]
If the limit

[Kim-Murty, 2020]

If the limit

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{p<x} \frac{a_{p} \log p}{p} \tag{15}
\end{equation*}
$$

exists, then the Riemann hypothesis for $L_{E}(s)$ is true, and the limit is $-r+1 / 2$ (Nagao-Mestre sum).
[Kim-Murty, 2020]
If the limit

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{p<x} \frac{a_{p} \log p}{p} \tag{16}
\end{equation*}
$$

exists, then the BSD conjecture is true.

Experimental data by Andrew V. Sutherland

We define

$$
S(x):=\frac{1}{\log x} \sum_{p \leq x, p \nmid \Delta_{E}} \frac{a_{p}(E) \log p}{p} .
$$

We expect this sum converges to $-r+\frac{1}{2}$ as $x \rightarrow \infty$.

By Andrew V. Sutherland

By Andrew V. Sutherland

By Andrew V. Sutherland

Sketch of the proof:

With

$$
\begin{equation*}
\psi_{E}(t)=\sum_{n \leq t} c_{n} \Lambda(n) \tag{17}
\end{equation*}
$$

Assuming the Riemann hypothesis for $L_{E}(s)$ is true, we obtain

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \int_{2}^{x} \frac{\psi_{E}^{2}(t)}{t^{3}} d t=\sum_{\rho}\left|\frac{n_{\rho}}{\rho}\right|^{2}
$$

where the sum is over all nontrivial distinct zeros ρ of $L_{E}(s)$, and n_{ρ} is the multiplicity of each ρ.

Sketch of the proof :

With

$$
\begin{equation*}
\psi_{E}(t)=\sum_{n \leq t} c_{n} \Lambda(n) \tag{17}
\end{equation*}
$$

We want to prove

Assuming the Riemann hypothesis for $L_{E}(s)$ is true, we obtain

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \int_{2}^{x} \frac{\psi_{E}^{2}(t)}{t^{3}} d t=\sum_{\rho}\left|\frac{n_{\rho}}{\rho}\right|^{2} \tag{18}
\end{equation*}
$$

where the sum is over all nontrivial distinct zeros ρ of $L_{E}(s)$, and n_{ρ} is the multiplicity of each ρ.

Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron's formula with careful error estimation, we obtain

$$
\begin{equation*}
\frac{\psi_{E}^{2}(t)}{t^{3}}=\frac{1}{t^{3}}\left(\sum_{\rho} n_{\rho} \frac{t^{\rho}}{\rho}+\mathcal{O}\left(\frac{t^{2}}{R}\right)\right)^{2} \tag{19}
\end{equation*}
$$

and by choosing sufficiently big R (size of the domain in Cauchy Residue theorem),

Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron's formula with careful error estimation, we obtain

$$
\begin{equation*}
\frac{\psi_{E}^{2}(t)}{t^{3}}=\frac{1}{t^{3}}\left(\sum_{\rho} n_{\rho} \frac{t^{\rho}}{\rho}+\mathcal{O}\left(\frac{t^{2}}{R}\right)\right)^{2} \tag{19}
\end{equation*}
$$

and by choosing sufficiently big R (size of the domain in Cauchy Residue theorem),

$$
\begin{aligned}
& \int_{2}^{x} \frac{\psi_{E}^{2}(t)}{t^{3}} d t \\
& =\sum_{\rho} \frac{n_{\rho}}{\rho}\left[\sum_{\rho^{\prime}=2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \int_{2}^{x} t^{\rho+\rho^{\prime}-3} d t+\sum_{\rho^{\prime} \neq 2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \int_{2}^{x} t^{\rho+\rho^{\prime}-3} d t\right]+\mathcal{O}(1)
\end{aligned}
$$

Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron's formula with careful error estimation, we obtain

$$
\begin{equation*}
\frac{\psi_{E}^{2}(t)}{t^{3}}=\frac{1}{t^{3}}\left(\sum_{\rho} n_{\rho} \frac{t^{\rho}}{\rho}+\mathcal{O}\left(\frac{t^{2}}{R}\right)\right)^{2} \tag{19}
\end{equation*}
$$

and by choosing sufficiently big R (size of the domain in Cauchy Residue theorem),

$$
\begin{aligned}
& \int_{2}^{x} \frac{\psi_{E}^{2}(t)}{t^{3}} d t \\
& =\sum_{\rho} \frac{n_{\rho}}{\rho}\left[\sum_{\rho^{\prime}=2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \int_{2}^{x} t^{\rho+\rho^{\prime}-3} d t+\sum_{\rho^{\prime} \neq 2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \int_{2}^{x} t^{\rho+\rho^{\prime}-3} d t\right]+\mathcal{O}(1) \\
& =\log x \sum_{\rho}\left|\frac{n_{\rho}}{\rho}\right|^{2}+\sum_{\rho} \frac{n_{\rho}}{\rho} \sum_{\rho^{\prime} \neq 2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \cdot \frac{x^{\rho+\rho^{\prime}-2}-2^{\rho+\rho^{\prime}-2}}{\rho+\rho^{\prime}-2}+\mathcal{O}(1),
\end{aligned}
$$

Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron's formula with careful error estimation, we obtain

$$
\begin{equation*}
\frac{\psi_{E}^{2}(t)}{t^{3}}=\frac{1}{t^{3}}\left(\sum_{\rho} n_{\rho} \frac{t^{\rho}}{\rho}+\mathcal{O}\left(\frac{t^{2}}{R}\right)\right)^{2} \tag{19}
\end{equation*}
$$

and by choosing sufficiently big R (size of the domain in Cauchy Residue theorem),

$$
\begin{aligned}
& \int_{2}^{x} \frac{\psi_{E}^{2}(t)}{t^{3}} d t \\
& =\sum_{\rho} \frac{n_{\rho}}{\rho}\left[\sum_{\rho^{\prime}=2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \int_{2}^{x} t^{\rho+\rho^{\prime}-3} d t+\sum_{\rho^{\prime} \neq 2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \int_{2}^{x} t^{\rho+\rho^{\prime}-3} d t\right]+\mathcal{O}(1) \\
& =\log x \sum_{\rho}\left|\frac{n_{\rho}}{\rho}\right|^{2}+\sum_{\rho} \frac{n_{\rho}}{\rho} \sum_{\rho^{\prime} \neq 2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \cdot \frac{x^{\rho+\rho^{\prime}-2}-2^{\rho+\rho^{\prime}-2}}{\rho+\rho^{\prime}-2}+\mathcal{O}(1),
\end{aligned}
$$

Sketch of the proof for (27)

$$
\sum_{\rho} \frac{n_{\rho}}{\rho} \sum_{\rho^{\prime} \neq 2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \cdot \frac{x^{\rho+\rho^{\prime}-2}-2^{\rho+\rho^{\prime}-2}}{\rho+\rho^{\prime}-2}
$$

can be estimated by considering the two separate cases :

$$
\left|\rho+\rho^{\prime}-2\right| \geq \eta \quad \text { and } \quad\left|\rho+\rho^{\prime}-2\right|<\eta
$$

and by following the result on the number of zeros of $L_{E}(s)$ in a bounded region
\square
The number of zeros such that $0<\operatorname{Im}(\rho) \leq T$ of $L_{E}(s)$ satisfies

Sketch of the proof for (27)

$$
\sum_{\rho} \frac{n_{\rho}}{\rho} \sum_{\rho^{\prime} \neq 2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \cdot \frac{x^{\rho+\rho^{\prime}-2}-2^{\rho+\rho^{\prime}-2}}{\rho+\rho^{\prime}-2}
$$

can be estimated by considering the two separate cases :

$$
\left|\rho+\rho^{\prime}-2\right| \geq \eta \quad \text { and } \quad\left|\rho+\rho^{\prime}-2\right|<\eta .
$$

and by following the result on the number of zeros of $L_{E}(s)$ in a bounded region :

The number of zeros such that $0<\operatorname{Im}(\rho) \leq T$ of $L_{E}(s)$ satisfies

Sketch of the proof for (27)

$$
\sum_{\rho} \frac{n_{\rho}}{\rho} \sum_{\rho^{\prime} \neq 2-\rho} \frac{n_{\rho^{\prime}}}{\rho^{\prime}} \cdot \frac{x^{\rho+\rho^{\prime}-2}-2^{\rho+\rho^{\prime}-2}}{\rho+\rho^{\prime}-2}
$$

can be estimated by considering the two separate cases :

$$
\left|\rho+\rho^{\prime}-2\right| \geq \eta \quad \text { and } \quad\left|\rho+\rho^{\prime}-2\right|<\eta .
$$

and by following the result on the number of zeros of $L_{E}(s)$ in a bounded region :

Theorem (Selberg)

The number of zeros such that $0<\operatorname{Im}(\rho) \leq T$ of $L_{E}(s)$ satisfies

$$
\begin{equation*}
N_{E}(T)=\frac{\alpha_{E}}{\pi} T(\log T+c)+\mathcal{O}(\log T) \tag{20}
\end{equation*}
$$

where c is a constant, α_{E} is a constant which depends on E.

Nagao's conjecture

For an elliptic curve \mathcal{E} over $\mathbb{Q}(T)$, at each prime p and $T=t$

$$
a_{p}\left(\tilde{\mathcal{E}}_{t}\right)=1-\# \tilde{\mathcal{E}}_{t}\left(\mathbb{F}_{p}\right)+p,
$$

and define a fibral average of the trace of Frobenius for each p

Nagao's conjecture

For an elliptic curve \mathcal{E} over $\mathbb{Q}(T)$, at each prime p and $T=t$

$$
a_{p}\left(\tilde{\mathcal{E}}_{t}\right)=1-\# \tilde{\mathcal{E}}_{t}\left(\mathbb{F}_{p}\right)+p
$$

and define a fibral average of the trace of Frobenius for each p :

$$
A_{p}(\mathcal{E})=\frac{1}{p} \sum_{t=0}^{p-1} a_{p}\left(\tilde{\mathcal{E}}_{t}\right)
$$

Nagao's conjecture

For an elliptic curve \mathcal{E} over $\mathbb{Q}(T)$, at each prime p and $T=t$

$$
a_{p}\left(\tilde{\mathcal{E}}_{t}\right)=1-\# \tilde{\mathcal{E}}_{t}\left(\mathbb{F}_{p}\right)+p,
$$

and define a fibral average of the trace of Frobenius for each p :

$$
A_{p}(\mathcal{E})=\frac{1}{p} \sum_{t=0}^{p-1} a_{p}\left(\tilde{\mathcal{E}}_{t}\right)
$$

Nagao's Conjecture for elliptic surfaces over \mathbb{Q} (1997)

$$
\lim _{X \rightarrow \infty} \frac{1}{X} \sum_{p \leq X}-A_{p}(\mathcal{E}) \log p=\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))
$$

Figure $-A_{p}(\mathcal{E})$ of $\mathcal{E}: y^{2}=x^{3}-3 t^{4} x-t^{2}\left(3+2 t^{8}\right)$
x axis: $A_{p}(\mathcal{E})$
y axis : Frequency of $A_{p}(\mathcal{E})$ up to 500th prime p

It appears that the average of $A_{p}(\mathcal{E})$ is 0 , indeed $\mathcal{E}(\mathbb{Q}(T))$ has rank 0 .

A generalization of Nagao's conjecture

Let $\mathcal{X} \rightarrow C$ be a surface with a fibration to a curve with generic fiber $X / k(C)$. For each prime \mathfrak{p}, we have $\tilde{\mathcal{X}} \rightarrow \tilde{C}$ and define a fibral average of the trace of Frobenius :

The generalized Nagao's conjecture enables us to consider surfaces with hyperellintic fibers.

A generalization of Nagao's conjecture

Let $\mathcal{X} \rightarrow C$ be a surface with a fibration to a curve with generic fiber $X / k(C)$. For each prime \mathfrak{p}, we have $\tilde{\mathcal{X}} \rightarrow \tilde{C}$ and define a fibral average of the trace of Frobenius :

$$
A_{\mathfrak{p}}(\mathcal{X})=\frac{1}{q_{\mathfrak{p}}} \sum_{c \in \tilde{C}\left(\mathbb{F}_{\mathfrak{p}}\right)} a_{\mathfrak{p}}\left(\tilde{\mathcal{X}}_{c}\right), \quad q_{\mathfrak{p}}=\# \mathbb{F}_{\mathfrak{p}}
$$

A generalization of Nagao's conjecture

Let $\mathcal{X} \rightarrow C$ be a surface with a fibration to a curve with generic fiber $X / k(C)$. For each prime \mathfrak{p}, we have $\tilde{\mathcal{X}} \rightarrow \tilde{C}$ and define a fibral average of the trace of Frobenius :

$$
A_{\mathfrak{p}}(\mathcal{X})=\frac{1}{q_{\mathfrak{p}}} \sum_{c \in \tilde{C}\left(\mathbb{F}_{\mathfrak{p}}\right)} a_{\mathfrak{p}}\left(\tilde{\mathcal{X}}_{c}\right), \quad q_{\mathfrak{p}}=\# \mathbb{F}_{\mathfrak{p}} .
$$

Generalized Nagao conjecture (by Hindry-Pacheco, 2005)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{q_{\mathfrak{p} \leq N}}-A_{\mathfrak{p}}(\mathcal{X}) \log q_{\mathfrak{p}}=\operatorname{rank} J_{X}(k(C))
$$

A generalization of Nagao's conjecture

Let $\mathcal{X} \rightarrow C$ be a surface with a fibration to a curve with generic fiber $X / k(C)$. For each prime \mathfrak{p}, we have $\tilde{\mathcal{X}} \rightarrow \tilde{C}$ and define a fibral average of the trace of Frobenius :

$$
A_{\mathfrak{p}}(\mathcal{X})=\frac{1}{q_{\mathfrak{p}}} \sum_{c \in \tilde{C}\left(\mathbb{F}_{\mathfrak{p}}\right)} a_{\mathfrak{p}}\left(\tilde{\mathcal{X}}_{c}\right), \quad q_{\mathfrak{p}}=\# \mathbb{F}_{\mathfrak{p}}
$$

Generalized Nagao conjecture (by Hindry-Pacheco, 2005)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{q_{p} \leq N}-A_{\mathfrak{p}}(\mathcal{X}) \log q_{\mathfrak{p}}=\operatorname{rank} J_{X}(k(C)) .
$$

The generalized Nagao's conjecture enables us to consider surfaces with hyperelliptic fibers.

Rewriting the Nagao conjecture

Changing the order of the sum, Nagao's conjecture becomes

$$
-\frac{1}{N} \sum_{p \leq N} A_{p}(\mathcal{E}) \log p=-\sum_{p \leq X} \frac{1}{p} \sum_{t \leq p} a_{p}\left(\mathcal{E}_{t}\right) \log p
$$

[Kim-Murty, 2020]If the limit

Rewriting the Nagao conjecture

Changing the order of the sum, Nagao's conjecture becomes

$$
\begin{aligned}
-\frac{1}{N} \sum_{p \leq N} A_{p}(\mathcal{E}) \log p & =-\sum_{p \leq X} \frac{1}{p} \sum_{t \leq p} a_{p}\left(\mathcal{E}_{t}\right) \log p \\
& =-\sum_{t \leq X}\left(\sum_{t \leq p \leq X} \frac{a_{p}\left(\mathcal{E}_{t}\right) \log p}{p}\right)
\end{aligned}
$$

[Kim-Murty, 2020]
If the limit

Rewriting the Nagao conjecture

Changing the order of the sum, Nagao's conjecture becomes

$$
\begin{aligned}
-\frac{1}{N} \sum_{p \leq N} A_{p}(\mathcal{E}) \log p & =-\sum_{p \leq X} \frac{1}{p} \sum_{t \leq p} a_{p}\left(\mathcal{E}_{t}\right) \log p \\
& =-\sum_{t \leq X}\left(\sum_{t \leq p \leq X} \frac{a_{p}\left(\mathcal{E}_{t}\right) \log p}{p}\right),
\end{aligned}
$$

[Kim-Murty, 2020]
If the limit

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{p<x} \frac{a_{p} \log p}{p} \tag{21}
\end{equation*}
$$

exists, then the Riemann hypothesis for $L_{E}(s)$ is true, and the limit is $-r+1 / 2$.

Therefore, from our analysis, for a fixed t, the inner sum is (ignoring error terms)

$$
\left(-r_{t}+\frac{1}{2}\right) \log \frac{X}{t}
$$

for $r_{t}=\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})$. So one may expect

This suggests the following (modified) form of Nagao's

conjecture

Therefore, from our analysis, for a fixed t, the inner sum is (ignoring error terms)

$$
\left(-r_{t}+\frac{1}{2}\right) \log \frac{X}{t}
$$

for $r_{t}=\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})$. So one may expect

$$
-\frac{1}{X} \sum_{p \leq X} A_{p}(\mathcal{E}) \log p \sim \frac{1}{X} \sum_{t \leq X}\left(r_{t}-\frac{1}{2}\right) \log \frac{X}{t}
$$

This suggests the following (modified) form of Nagao's

conjecture

Therefore, from our analysis, for a fixed t, the inner sum is (ignoring error terms)

$$
\left(-r_{t}+\frac{1}{2}\right) \log \frac{X}{t}
$$

for $r_{t}=\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})$. So one may expect

$$
-\frac{1}{X} \sum_{p \leq X} A_{p}(\mathcal{E}) \log p \sim \frac{1}{X} \sum_{t \leq X}\left(r_{t}-\frac{1}{2}\right) \log \frac{X}{t} .
$$

This suggests the following (modified) form of Nagao's conjecture :

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{1}{X} \sum_{t \leq X}\left(r_{t}-\frac{1}{2}\right) \log \frac{X}{t}=\operatorname{rank} \mathcal{E}(\mathbb{Q}(T)) \tag{22}
\end{equation*}
$$

Using Stirling's formula, we get

$$
\begin{equation*}
\frac{1}{X} \sum_{t \leq X} r_{t} \sim\left(\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))+\frac{1}{2}\right) \tag{23}
\end{equation*}
$$

as $X \rightarrow \infty$ (ignoring error terms).

Experimental results

Fermigier studied 66918 curves lying in 93 families having generic ranks between 0 to 4 , and he found

$$
\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})=\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))+ \begin{cases}0 & \text { with probability } 32 \%, \\ 1 & \text { with probability } 48 \%, \\ 2 & \text { with probability } 18 \%, \\ 3 & \text { with probabiity } 2 \%,\end{cases}
$$

Hence, for every family of elliptic curves which is considered, Fermigier found the quantity

Experimental results

Fermigier studied 66918 curves lying in 93 families having generic ranks between 0 to 4 , and he found

$$
\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})=\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))+ \begin{cases}0 & \text { with probability } 32 \%, \\ 1 & \text { with probability } 48 \%, \\ 2 & \text { with probability } 18 \%, \\ 3 & \text { with probabiity } 2 \%,\end{cases}
$$

Hence, for every family of elliptic curves which is considered, Fermigier found the quantity

$$
\frac{1}{2 X} \sum_{|t| \leq X} \operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})-\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))-\frac{1}{2}
$$

ranges from 0.08 to 0.54 and averages around 0.35 .

Right conjecture?

Based on the heuristic results

$$
\frac{1}{2 X} \sum_{|t| \leq X} \operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})-\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))-\frac{1}{2} \in[0.08,0.54]
$$

we (originally) conjectured that

Right conjecture?

Based on the heuristic results

$$
\frac{1}{2 X} \sum_{|t| \leq X} \operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})-\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))-\frac{1}{2} \in[0.08,0.54]
$$

we (originally) conjectured that

$$
\left[\lim _{X \rightarrow \infty} \frac{1}{2 X} \sum_{|t| \leq X} \operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})-\frac{1}{2}\right]=\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))
$$

as $X \rightarrow \infty$. Here [•] denotes the greatest integer function.

Interesting example

Recall the functional equation of $L_{E}(s):$ For E / \mathbb{Q}, we have

$$
\Lambda_{E}(2-s)=W(E) \Lambda_{E}(s)
$$

where $\Lambda_{E}(s)=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L_{E}(s)$, and $W(E) \in\{ \pm 1\}$ is the root number of E.

$$
W(E)=(-1)^{\operatorname{rank} E(\mathbb{Q})} \quad \text { (Parity conjecture). }
$$

Silverman suggested the following example of Rizzo
Consider $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$, then $j(T)=256\left(T^{2}+3 T+9\right)$ and it is an elliptic curve defined over each fiber

$$
W\left(\mathcal{E}_{t}\right)=(-1)^{\mathrm{rank} \mathcal{E}_{t}(\mathbb{Q})}=-1, \quad \text { for every } t \in \mathbb{Z}
$$

Interesting example

Recall the functional equation of $L_{E}(s):$ For E / \mathbb{Q}, we have

$$
\Lambda_{E}(2-s)=W(E) \Lambda_{E}(s)
$$

where $\Lambda_{E}(s)=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L_{E}(s)$, and $W(E) \in\{ \pm 1\}$ is the root number of E. Then it is conjectured that

$$
\begin{equation*}
\left.W(E)=(-1)^{\operatorname{rank} E(\mathbb{Q})} \quad \text { (Parity conjecture }\right) \tag{24}
\end{equation*}
$$

Silverman suggested the following example of Rizzo
Consider $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$, then $j(T)=256\left(T^{2}+3 T+9\right)$ and it is an elliptic curve defined over each fiber

Interesting example

Recall the functional equation of $L_{E}(s):$ For E / \mathbb{Q}, we have

$$
\Lambda_{E}(2-s)=W(E) \Lambda_{E}(s)
$$

where $\Lambda_{E}(s)=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L_{E}(s)$, and $W(E) \in\{ \pm 1\}$ is the root number of E. Then it is conjectured that

$$
\begin{equation*}
W(E)=(-1)^{\operatorname{rank} E(\mathbb{Q})} \quad \text { (Parity conjecture). } \tag{24}
\end{equation*}
$$

Silverman suggested the following example of Rizzo :
Consider $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$, then $j(T)=256\left(T^{2}+3 T+9\right)$ and it is an elliptic curve defined over $\mathbb{Q}(T)$ which has $\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))=1$, while the root number of each fiber

$$
W\left(\mathcal{E}_{t}\right)=(-1)^{\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})}=-1, \quad \text { for every } t \in \mathbb{Z}
$$

For $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$, with the root number

$$
W\left(\mathcal{E}_{t}\right)=(-1)^{\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})}=-1, \quad \text { for every } t \in \mathbb{Z}
$$

via the specialization theorem, one cannot expect that the rank would jump by 2 very often. and cannot jump by 1 by the sign of the functional equation. Hence, we expect

For $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$, with the root number

$$
W\left(\mathcal{E}_{t}\right)=(-1)^{\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})}=-1, \quad \text { for every } t \in \mathbb{Z}
$$

via the specialization theorem, one cannot expect that the rank would jump by 2 very often. and cannot jump by 1 by the sign of the functional equation. Hence, we expect

For $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$, with the root number

$$
W\left(\mathcal{E}_{t}\right)=(-1)^{\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})}=-1, \quad \text { for every } t \in \mathbb{Z}
$$

via the specialization theorem, one cannot expect that the rank would jump by 2 very often. and cannot jump by 1 by the sign of the functional equation. Hence, we expect

$$
\lim _{X \rightarrow \infty} \frac{1}{2 X} \sum_{|t| \leq X} \operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})=\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))
$$

Hence, there would not be extra $1 / 2$ coming from the "fact" that half of the fibers have the wrong negative sign (root number) in their functional equation. Hence, we need to reformulate

$$
\frac{1}{2 X} \sum_{|t|<X} \operatorname{rank} \mathcal{E}_{t}(\mathbb{Q}) \rightarrow \operatorname{rank} \mathcal{E}(\mathbb{Q}(T))+S(E)
$$

as $X \rightarrow \infty$, and $S(E)$ is some sort of average of the signs appearing in functional equations of the fibers.

Conjecture by Kim and Murty

For $r_{t}=\operatorname{rank} \mathcal{E}_{t}(\mathbb{Q})$, we conjecture : define

$$
\begin{equation*}
\mathcal{T}:=\left\{t \in \mathbb{Z}: W\left(\mathcal{E}_{t}\right)=(-1)^{\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))+1}\right\} . \tag{25}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{1}{2 X} \sum_{|t| \leq X} r_{t}=\operatorname{rank} \mathcal{E}(\mathbb{Q}(T))+\delta(\mathcal{T}) \tag{26}
\end{equation*}
$$

where $\delta(\mathcal{T})$ is the natural density of \mathcal{T} as a subset of \mathbb{Z}.

What is known?

Assume that the limit

$$
\lim _{X \rightarrow \infty} \frac{1}{2 X} \sum_{|t| \leq X} r_{t}
$$

exists. Then the parity conjecture (for each fiber of \mathcal{E}) implies that the Conjecture is true modulo 2.

Selberg Class

The Selberg class \mathbb{S} consists of complex variable functions $F(s)$ satisfying the following properties :

1. For $\Re(s)>1$, we can write $F(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ with $a_{1}=1$.
2. For some integer $m \geq 0,(s-1)^{m} F(s)$ extends to an entire function of finite order.
3. There are numbers $Q>0, \alpha_{i}>0, r_{i} \in \mathbb{C}$ with $\Re\left(r_{i}\right) \geq 0$ such that

$$
\Phi(s)=Q^{s} \prod_{i=1}^{\infty} \Gamma\left(\alpha_{i} s+r_{i}\right) F(s)
$$

which satisfies a functional equation $\Phi(s)=w \bar{\Phi}(1-s)$ with a complex number $|w|=1$ and $\bar{\Phi}(s):=\overline{\Phi(\bar{s})}$.
4. There exists an Euler product $F(s)=\prod_{p} F_{p}(s)$ for $\Re(s)>1$.
5. For any fixed $\epsilon>0, a_{n}=\mathcal{O}_{\epsilon}\left(n^{\epsilon}\right)$.

Examples

There are well-known examples of elements in \mathbb{S}.

1. The Riemann zeta function $\zeta(s) \in \mathbb{S}$.
2. Dirichlet L functions $L(s, \chi)$ and their vertical shifts $L(s+i \theta, \chi)$ are in \mathbb{S}.
3. For a number field K, the Dedekind zeta function $\zeta_{K}(s)$ is in \mathbb{S}.
4. For a holomorphic newform f, the associated L-function $L(s, f)$ is in \mathbb{S}.

A generalization for the Selberg class

We can extend the previous theorem to L-functions in the Selberg class. Let $F(s) \in \mathbb{S}$ and write

$$
-\frac{F^{\prime}}{F}(s)=\sum_{n=1}^{\infty} \Lambda_{F}(n) n^{-s} \text { and } \psi_{F}(t):=\sum_{n \leq t} \Lambda_{F}(n)
$$

A generalization

Assuming the Riemann hypothesis, if it can be formulated, for $F(s)$ is true, we obtain

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\log x} \int_{2}^{x} \frac{\psi_{F}^{2}(t)}{t^{2}} d t=\sum_{\rho}\left|\frac{n_{\rho}}{\rho}\right|^{2} \tag{27}
\end{equation*}
$$

where the sum is over all nontrivial distinct zeros ρ of $F(s)$, and n_{ρ} is the multiplicity of each ρ.

Hence, if we write r as the order of $F(s)$ at $s=\frac{1}{2}$, we expect

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{p<x} \frac{\Lambda_{F}(p)}{p}=-r+A
$$

where A is a constant. We (conjecturally) guess that $A=\frac{1}{2}$ as well for a primitive $F \in \mathbb{S}$ by the conjectural theory of the Rankin-Selberg convolution for the Selberg class \mathbb{S}.

Hence, if we write r as the order of $F(s)$ at $s=\frac{1}{2}$, we expect

$$
\lim _{x \rightarrow \infty} \frac{1}{\log x} \sum_{p<x} \frac{\Lambda_{F}(p)}{p}=-r+A
$$

where A is a constant. We (conjecturally) guess that $A=\frac{1}{2}$ as well for a primitive $F \in \mathbb{S}$ by the conjectural theory of the Rankin-Selberg convolution for the Selberg class \mathbb{S}.

Thank you for your attention!

