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Introduction
Riemann zeta function
The (Riemann) zeta function is a function of a complex variable
which is defined to be
— 1
(=3 )
n=1

The zeta function converges when Re(s) > 1.
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Introduction
Riemann zeta function
The (Riemann) zeta function is a function of a complex variable
which is defined to be
— 1
(=3 )
n=1
The zeta function converges when Re(s) > 1. The functional
equation

~—

¢(s) = 2°7° L sin (%3) T(1—s)¢(1—s) (2

shows that there are trivial zeros at s = —2,—4,—6....

The Riemann hypothesis for ((s)

The nontrivial zeros of ((s) are all on the line Re(s) = 1.
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Von Mangoldt function

The Von Mangoldt function is defined as

| logp if n=pF;
An) = { 0 otherwise. (3)
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Von Mangoldt function

The Von Mangoldt function is defined as

| logp ifn= pF;
An) = { 0 otherwise. (3)

It appears in the log derivative of the zeta function :

C(s) _ & Am)
o) "2 W

n=1
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Von Mangoldt function

The Von Mangoldt function is defined as

| logp ifn= pF;
An) = { 0 otherwise. (3)

It appears in the log derivative of the zeta function :

C(s) _ & Am)
o) "2 W

n=1

We consider the sum
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With
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With
D) =Y An), (6)

n<t

[Cramér, 1921|

When Riemann Hypothesis is true, we have

1 T =\
mlggologx/Q ( t ) dt_z

p

2

, (7)

np

p

where p is nontrivial distinct zeros of ((s), and n,, is the
multiplicity of the corresponding zero p.



From BSD to Nagao’s conjecture 7 /40

For L function of elliptic curves

Definition

Let E be an elliptic curve over Q with discriminant Ag and
conductor Ng. For each prime p { Ag, we write the number of
points of E (mod p) as
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For L function of elliptic curves
Definition

Let E be an elliptic curve over Q with discriminant Ag and
conductor Ng. For each prime p { Ag, we write the number of
points of E (mod p) as

Np = #E(Fy) =p+1 - ap, (®)

where a,, satisfies Hasse’s inequality |a,| < 2,/p. For p | Ag, we
define a, = 0, —1, or 1 (Depends on the reduction type).
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The L-function attached to E, denoted as Lg(s) is then defined
as an Euler product using this datum :

which converges absolutely for Re(s) > 3/2 by virtue of Hasse’s
inequality.
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The L-function attached to E, denoted as Lg(s) is then defined
as an Euler product using this datum :

o= () T-es) o

plAE PAE

which converges absolutely for Re(s) > 3/2 by virtue of Hasse’s
inequality.
Expanding the Euler product into a Dirichlet series, we write

oo an,
Li(s) = . (10)
n=1



From BSD to Nagao’s conjecture 9 /40

Riemann hypothesis for Lg(s)

By the work of Wiles, and Breuil, Conrad, Diamond, and
Taylor, Lg(s) extends to an entire function and satisfies a
functional equation relating Lg(s) to Lg(2 — s).
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Riemann hypothesis for Lg(s)

By the work of Wiles, and Breuil, Conrad, Diamond, and
Taylor, Lg(s) extends to an entire function and satisfies a
functional equation relating Lg(s) to Lg(2 — s).

Riemann hypothesis for Lg(s)
All the nontrivial zeros of Lg(s) lie on Re(s) = 1.

We can do Cramér type estimation for Lg(s)!
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For L function of elliptic curves

Analogously, we consider the log derivative of Lg(s) :

Lip(s) _ g eal(n)
Lg(s) _Z ns

n=1
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For L function of elliptic curves

Analogously, we consider the log derivative of Lg(s) :

Lip(s) _ g eal(n)
Lg(s) _Z ns

n=1

where
oyt + By, ifn=p"and pt N,
cn =19 a, ifn=p™and p| N,
0, otherwise.

Hence, when m = 1, ¢, is the Frobenius trace a,.
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Cramér-type estimation for L function of elliptic curves

With
bp) = Y enl(n), (1)

n<t
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Cramér-type estimation for L function of elliptic curves

With
Ye(t) = ch(n), (11)

n<t

[Kim-Murty, 2020]
Assuming the Riemann hypothesis for Lg(s) is true, we obtain

2
"p

lim —— w_w%E(t)dt:Z p

12
z—oo logxw Jo 13 p (12)

I

where the sum is over all nontrivial distinct zeros p of Lg(s),
and n, is the multiplicity of each p.
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Implications of the estimation ?
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The Birch and Swinnerton-Dyer conjecture

A version of BSD

For some constant C'g, we have

N,
122 ~ cotiogar, (13)
p<x p
PAR

where 7 is the order of the zero of the L-function Lg(s) of E at
s =1
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The Birch and Swinnerton-Dyer conjecture

A version of BSD

For some constant C'g, we have

N,
H —£ ~ Cp(logz)", (13)
p<x
PAR

where 7 is the order of the zero of the L-function Lg(s) of E at
s =1

Furthermore, Birch and Swinnerton-Dyer conjectured that the
order of the zero of the L-function Lg(s) is equal to the rank of
the Mordell-Weil group E(Q).
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The BSD conjecture is true if and only if

Z (a’; + ,8]’;) logp = o(xzlog x).
pF<z
PtAE
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The BSD conjecture is true if and only if

Z (a’; + 51’;) logp = o(xlog x).
pF<a
PR

Whereas, the Riemann hypothesis for Lg(s) is equivalent to

E (a]; + ,35) logp = O(z(log ac)z)
pF<z
PtAE
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The BSD conjecture is true if and only if

Z (a’; + B;f) logp = o(xlog x).
pF<a
PtAE

Whereas, the Riemann hypothesis for Lg(s) is equivalent to

Z (o/; + ,6’5) logp = O(z(log z)?).
pF<a
pfAp
Hence, the BSD conjecture is much deeper than the Riemann

hypothesis for elliptic curves according to our current knowledge
(By Goldfeld, Kuo-Murty, and Conrad).
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By applying Perron’s formula, and considering the subsequential
limit, we obtain the following :

[Kim-Murty, 2020]

Assume the Riemann hypothesis is true for Lg(s). Then there is
a sequence T, € [2",2" 1] such that

. 1 aplogp 1
lim i = —r+4+ - 14
> sk 1o

n—o0 log T, 2’

pP<Tn

where 7 is the order of Lg(s) at s = 1.



From BSD to Nagao’s conjecture 16 /40

[Kim-Murty, 2020]
If the limit

1 1
lim —— R (15)
T—r00 Og{L’ . p

exists, then the Riemann hypothesis for Lg(s) is true, and the
limit is —r + 1/2 (Nagao-Mestre sum).
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[Kim-Murty, 2020]
If the limit

1 1
lim PPt (15)
z—oo log x P

p<x

exists, then the Riemann hypothesis for Lg(s) is true, and the
limit is —r + 1/2 (Nagao-Mestre sum).

[Kim-Murty, 2020]
If the limit

1 1

lim Pt (16)
z—oco log x P

p<x

exists, then the BSD conjecture is true.
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Experimental data by Andrew V. Sutherland

We define

S(a) : 1 T ap(E) logp

We expect this sum converges to —r + % as  — 00.
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By Andrew V. Sutherland
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By Andrew V. Sutherland

0
1
[ —r=1 -3
—r=3 ‘v/\/\"}""\‘/“\\ \"
F {
j
i

A A O O A




From BSD to Nagao’s conjecture 21 /40

Sketch of the proof :

With
bp) = Y el (n), (17)

n<t
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Sketch of the proof :

With
bp) = Y el (n), (17)

n<t

We want to prove

Assuming the Riemann hypothesis for Lg(s) is true, we obtain

2

L) (18)

p

lim 1 : w%(t) dt = Z

z—oo logx Jo 13 >

where the sum is over all nontrivial distinct zeros p of Lg(s),
and n, is the multiplicity of each p.
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Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron’s formula with
careful error estimation, we obtain

¢,§3(t) _ tl3 <Z np% +O (%)) : (19)
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Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron’s formula with
careful error estimation, we obtain

%ig(t) _ tl3 (Z np% +O (%)) : (19)

and by choosing sufficiently big R (size of the domain in Cauchy
Residue theorem),

Pt

=y ed /mtp+p'3dt+ > E/xt“p'?’dt +0(1)
r pJa P

p'=2—p p'#2—p
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Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron’s formula with
careful error estimation, we obtain

%ig(t) _ tl3 <Z np% +O (%)) : (19)

and by choosing sufficiently big R (size of the domain in Cauchy
Residue theorem),

x 2
A0
t3
2
. ”_r;/ pSa e Y / 3t | 1+ o(1)
p P pr=2— o p'#2—p

PP =2 _ gptp' =2

+Zn” > g tow,

9#2 P

n
DM
p
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Sketch of the proof for (27)

Using Cauchy Residue theorem, and Perron’s formula with
careful error estimation, we obtain

%ig(t) _ tl3 <Z np% +O (%)) : (19)

and by choosing sufficiently big R (size of the domain in Cauchy
Residue theorem),

x 2
A0
t3
2
. ”_r;/ pSa e Y / 3t | 1+ o(1)
p P pr=2— o p'#2—p

PP =2 _ gptp' =2

+Zn” > g tow,

9#2 P

n
DM
p
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Sketch of the proof for (27)

>y
, P p'#2—p
can be estimated by considering the two separate cases :

Ny PP =2 _ gptp' =2

I ptp =2
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Sketch of the proof for (27)

> o > ny aftr' =2 optr =2
/ r_9

Py, P ptp

can be estimated by considering the two separate cases :

lp+p' =2[>n and |p+p" —2|<n.

and by following the result on the number of zeros of Lg(s) in a
bounded region :
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Sketch of the proof for (27)

PP =2 _ 9ptp'=2

Z HDI
f—2
p'#E2—p prp
can be estimated by considering the two separate cases :

lp+p —2[>n and |p+p —2[<n

and by following the result on the number of zeros of Lg(s) in a
bounded region :

Theorem (Selberg)
The number of zeros such that 0 < Im(p) < T of Lg(s) satisfies

Ng(T) = %T(logT +¢) + O(log T), (20)

where ¢ is a constant, ag is a constant which depends on E.



From BSD to Nagao’s conjecture 24 /40

Nagao’s conjecture
For an elliptic curve £ over Q(T'), at each prime p and T' = ¢

ap(&) =1 — #E(Fp) +p,
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Nagao’s conjecture
For an elliptic curve £ over Q(T'), at each prime p and T' = ¢

ap(&) =1 — #E(Fp) +p,

and define a fibral average of the trace of Frobenius for each p :

p—1
A,(E) = % > an(E)
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Nagao’s conjecture
For an elliptic curve £ over Q(T'), at each prime p and T' = ¢

ap(&) = 1 — #&(F,) + p,

and define a fibral average of the trace of Frobenius for each p :

p—1
A,(E) = % > orléo)

Nagao’s Conjecture for elliptic surfaces over Q (1997)

. 1
Xlgnoo X pg;{ —A,(€)logp = rank E(Q(T)).
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FIGURE — A, (&) of € : y? = 2 — 3tz — t2(3 + 2t°)
x axis : Ap(E)
y axis : Frequency of A,(€) up to 500th prime p

-15 -10

It appears that the average of A,(&) is 0, indeed £(Q(T")) has
rank 0.
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A generalization of Nagao’s conjecture

Let X — C be a surface with a fibration to a curve with generic
fiber X/k(C). For each prime p, we have X — C and define a
fibral average of the trace of Frobenius :
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A generalization of Nagao’s conjecture
Let X — C be a surface with a fibration to a curve with generic
fiber X/k(C). For each prime p, we have X — C and define a
fibral average of the trace of Frobenius :

A,(X) = — Y wp(Xe), gy =#F,.

P ce(®,)
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A generalization of Nagao’s conjecture
Let X — C be a surface with a fibration to a curve with generic
fiber X/k(C). For each prime p, we have X — C and define a
fibral average of the trace of Frobenius :

A,(X) = — Y wp(Xe), gy =#F,.

P ce(®,)

Generalized Nagao conjecture (by Hindry-Pacheco, 2005)

. 1
A}gnoo N qz —Ap(X)log gy = rank Jx (k(C)).
p<N
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A generalization of Nagao’s conjecture
Let X — C be a surface with a fibration to a curve with generic
fiber X/k(C). For each prime p, we have X — C and define a
fibral average of the trace of Frobenius :

A,g(z"cf):l Z ap(Xe), g = #Fp.

P ce(®,)

Generalized Nagao conjecture (by Hindry-Pacheco, 2005)

. 1
A}gnoo N qz —Ap(X)log gy = rank Jx (k(C)).
p<N

The generalized Nagao’s conjecture enables us to consider
surfaces with hyperelliptic fibers.
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Rewriting the Nagao conjecture
Changing the order of the sum, Nagao’s conjecture becomes

¥ T A lor == Y S a(Enlogs

p<N p<X " t<p
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Rewriting the Nagao conjecture
Changing the order of the sum, Nagao’s conjecture becomes

DI CITEED SEy SN

p<N p<X " t<p

ap(&r) lo
-y v (&)logp )

t<X \ t<p<X p
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Rewriting the Nagao conjecture
Changing the order of the sum, Nagao’s conjecture becomes

1 1
N Z Ay (€)logp = — Z ];Zap(gt)logp

p<N p<X " t<p

ap(&r) lo
-y v (;gp7

t<X \ t<p<X

[Kim-Murty, 2020]
If the limit

. 1 a,logp
lim 2 21
>k )

z—oo log x
p<x

exists, then the Riemann hypothesis for Lg(s) is true, and the
limit is —r + 1/2.



From BSD to Nagao’s conjecture 28 /40

Therefore, from our analysis, for a fixed ¢, the inner sum is
(ignoring error terms)

+1 | X
Tt 2 Ogta

for r, = rank &(Q).



From BSD to Nagao’s conjecture 28 /40

Therefore, from our analysis, for a fixed ¢, the inner sum is
(ignoring error terms)

+1 | X
Tt 2 Ogta

for ry = rank &(Q). So one may expect

1 1 1 X
¥ Z Ap(E)logp ~ X Z (rt - 5) log e

p<X t<X
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Therefore, from our analysis, for a fixed ¢, the inner sum is
(ignoring error terms)

+1 | X
Tt 2 Ogta

for ry = rank &(Q). So one may expect
1 1 1 X
¥ Z Ap(E)logp ~ X Z (rt - 5) log e
p<X t<X

This suggests the following (modified) form of Nagao’s
conjecture :

lim % Z (rt — %) logé =rank £(Q(T)). (22)

t<X
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Using Stirling’s formula, we get

% Z Ty~ <ra,nk E(Q(T)) + %) (23)

t<X

as X — oo (ignoring error terms).
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Experimental results

Fermigier studied 66918 curves lying in 93 families having
generic ranks between 0 to 4, and he found

with probability 32%,
with probability 48%,
with probability 18%,
with probabiity 2%.

rank &(Q) = rank E(Q(T)) +

W N = O
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Experimental results

Fermigier studied 66918 curves lying in 93 families having
generic ranks between 0 to 4, and he found

with probability 32%,
with probability 48%,
with probability 18%,
with probabiity 2%.

rank &(Q) = rank E(Q(T)) +

W N = O

Hence, for every family of elliptic curves which is considered,
Fermigier found the quantity

N =

1
s O rank &(Q) - rank E(Q(T)) -

lt]<Xx

ranges from 0.08 to 0.54 and averages around 0.35.
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Right conjecture ?

Based on the heuristic results

% > rank £(Q) — rank £(Q(T)) — % € [0.08,0.54] ,
ESS
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Right conjecture ?

Based on the heuristic results

% > rank &(Q) —rank £(Q(T)) — % € [0.08,0.54] ,
jt|<x

we (originally) conjectured that

lim — Z rank &(Q) — = | =rank E(Q(T))

X—00 2
|t|<X

as X — oo. Here [ - | denotes the greatest integer function.
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Interesting example
Recall the functional equation of Lg(s) : For E/Q, we have

Ap(2 —s) = W(E)AE(s),

where Ap(s) = N*/2(2n)~°T'(s)Lg(s), and W(E) € {1} is the
root number of FE.
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Interesting example
Recall the functional equation of Lg(s) : For E/Q, we have

Ap(2 —s) = W(E)AE(s),

where Ap(s) = N*/2(2n)~°T'(s)Lg(s), and W(E) € {1} is the
root number of E. Then it is conjectured that

W(E) = (=1)™kEQ (Parity conjecture). (24)
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Interesting example
Recall the functional equation of Lg(s) : For E/Q, we have

Ap(2 - s) = W(E)Ag(s),

where Ap(s) = N*/2(2n)~°T'(s)Lg(s), and W(E) € {1} is the
root number of E. Then it is conjectured that

W(E) = (—1)"%P@  (Parity conjecture). (24)
Silverman suggested the following example of Rizzo :
Consider € : y? = 23 + Ta? — (T + 3)z + 1, then
§(T) = 256(T? + 3T + 9) and it is an elliptic curve defined over

Q(T') which has rank £(Q(T)) = 1, while the root number of
each fiber

W(&) = (—1)rankgt(@) =—1, foreveryt e Z.
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For € : y? = 23 + Ta? — (T + 3)z + 1, with the root number

W(&) = (—1)rank€t(@) =—1, foreveryteZ,
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For € : y? = 23 + Ta? — (T + 3)z + 1, with the root number
W(&) = (—1)2k&Q = 1 for every t € Z,

via the specialization theorem, one cannot expect that the rank
would jump by 2 very often. and cannot jump by 1 by the sign
of the functional equation. Hence, we expect
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For € : y? = 23 + Ta? — (T + 3)z + 1, with the root number
W(&) = (—1)2k&Q = 1 for every t € Z,

via the specialization theorem, one cannot expect that the rank
would jump by 2 very often. and cannot jump by 1 by the sign
of the functional equation. Hence, we expect

1
lim o > rank £(Q) = rank £(Q(T)).

X—o0 2
[t<X
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Hence, there would not be extra 1/2 coming from the "fact" that
half of the fibers have the wrong negative sign (root number) in
their functional equation. Hence, we need to reformulate

S O ek £(Q) - rank E(Q(T)) + S(E)
[t]<X

as X — oo, and S(F) is some sort of average of the signs
appearing in functional equations of the fibers.
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Conjecture by Kim and Murty

For r, = rank &/(Q), we conjecture : define
T = {t €L W(E) = (-1)rank5(@(T>>+1} . (25)
Then we have

lim — Z ry = rank E(Q(T)) + 6(T) (26)

[t]<X

where §(7) is the natural density of 7 as a subset of Z.
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What is known ?

Assume that the limit
lim —
Xgnoo 2X Z "t
[t]<X

exists. Then the parity conjecture (for each fiber of £) implies
that the Conjecture is true modulo 2.
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Selberg Class

The Selberg class S consists of complex variable functions F(s)
satisfying the following properties :

1.
2.

For R(s) > 1, we can write F(s) = > | % with a; = 1.
For some integer m > 0, (s — 1)™F(s) extends to an entire
function of finite order.

There are numbers @ > 0, a; > 0, r; € C with R(r;) >0
such that

O(s) = Q° [[T(cus + ri)F(s)
i=1

which satisfies a functional equation ®(s) = w®(1 — s) with

a complex number |w| = 1 and ®(s) == ®(3).

There exists an Euler product F(s) = [[F,(s) for R(s) > 1.
P

For any fixed € > 0, a,, = O(n°).



From BSD to Nagao’s conjecture 38 /40

Examples

There are well-known examples of elements in S.

1. The Riemann zeta function ((s) € S.

2. Dirichlet L functions L(s, x) and their vertical shifts
L(s+10,x) are in S.

3. For a number field K, the Dedekind zeta function (x(s) is
in S.

4. For a holomorphic newform f, the associated L-function
L(s, f)isin S.
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A generalization for the Selberg class

We can extend the previous theorem to L-functions in the
Selberg class. Let F(s) € S and write

F S
(8= > Ap(n)n~* and Yp(t) =Y Ap(n).
n=1 n<t
A generalization

Assuming the Riemann hypothesis, if it can be formulated, for
F(s) is true, we obtain

2
p

o | (27)

lim 1 ' w%(t) dt = Z

z—oo logxw Jo 12 p

where the sum is over all nontrivial distinct zeros p of F(s), and
n, is the multiplicity of each p.
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Hence, if we write  as the order of F(s) at s = %, we expect

lim ! ZAF(p) =-—r+ A,

z—oo log x = P

where A is a constant. We (conjecturally) guess that A = 1 as
well for a primitive F' € S by the conjectural theory of the

Rankin-Selberg convolution for the Selberg class S.

[\
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Hence, if we write  as the order of F(s) at s = %, we expect

lim ! ZAF(p) =-—r+ A,

z—oo log x = P
where A is a constant. We (conjecturally) guess that A = 1
well for a primitive F' € S by the conjectural theory of the
Rankin-Selberg convolution for the Selberg class S.
Thank you for your attention !

as

[\



