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Abstract

Inspired by the analogy between the group of units F×
p of the finite field with p

elements and the group of points E(Fp) of an elliptic curve E/Fp, E. Kowalski, A. Akbary
& D. Ghioca, and T. Freiberg & P. Kurlberg investigated the asymptotic behaviour of
elliptic curve sums analogous to the Titchmarsh divisor sum

∑
p≤x τ (p+ a) ∼ Cx . In

this paper, we present a comprehensive study of the constants C(E) emerging in the
asymptotic study of these elliptic curve divisor sums in place of the constant C above.
Specifically, by analyzing the division fields of an elliptic curve E/Q, we prove bounds
for the constants C(E) and, in the generic case of a Serre curve, we prove explicit closed
formulae for C(E) amenable to concrete computations. Moreover, we compute the
moments of the constants C(E) over two-parameter families of elliptic curves E/Q. Our
methods and results complement recent studies of average constants occurring in
other conjectures about reductions of elliptic curves by addressing not only the average
behaviour, but also the individual behaviour of these constants, and by providing
explicit tools towards the computational verifications of the expected asymptotics.

Keywords: Titchmarsh divisor, Divisor sum, Serre curve, Elliptic curve, Galois
representation

Mathematics Subject Classification: 11A25: arithmetic functions, related numbers,
inversion formulas, 11G05: elliptic curves over global fields, 11G20: curves over finite
and local fields, 11N37: asymptotic results on arithmetic functions, 11Y60: evaluation of
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1 Introduction
The Titchmarsh divisor problem concerns the asymptotic behaviour of the sum∑

p≤x
τ (p + a), as a function of x, where p denotes a rational prime, τ (n) := #{d ≥

1 : d | n} denotes the divisor function, and a denotes a fixed integer. The study of this sum
has spanned over five decades and is intimately related to some of the most significant
research in analytic number theory (see [6,15,21,30,37], and [33]). By results about primes
in arithmetic progressions which have become standard, we now know that, as x → ∞,

∑

p≤x
τ (p+ a) ∼ ζ (2)ζ (3)

ζ (6)
∏

ℓ|a

(
1 − ℓ

ℓ2 − ℓ + 1

)
x, (1)

where ζ (·) denotes the Riemann zeta function and ℓ denotes a rational prime.
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Divisor problems similar to that of Titchmarsh may be formulated in other settings,
such as the setting of elliptic curves, as we now describe. Let E/Q be an elliptic curve
defined over the field of rational numbers. For a prime p of good reduction for E, let E/Fp
be the reduction of Emodulo p. From the basic theory of elliptic curves (see [36, Chap. III,
§6]), it is known that the group E(Fp) may be expressed as a product of two cyclic groups,

E(Fp) ≃Z/d1,pZ × Z/d2,pZ,

where d1,p = d1,p(E), d2,p = d2,p(E) are uniquely determined positive integers satisfying
d1,p | d2,p. Determining the asymptotic behaviour of sums over p ≤ x of arithmetic
functions evaluated at the elementary divisors d1,p and d2,p may be viewed as Titchmarsh
divisor problems for elliptic curves. Such problems unravel striking similarities, but also
intriguing contrasts, to the original Titchmarsh divisor problem, as illustrated in [1,2,7,
8,13,14,17,18,28,29,32], and [41].
The focus of our paper is on the constants emerging in the following three Titchmarsh

divisor problems for elliptic curves. In all the expressions below, the letters p and ℓ denote
primes, with p being a prime of good reduction for the given elliptic curve.

Conjecture 1 (Kowalski [29, Sect. 3.2])
Let E/Q be an elliptic curve. Then, as x → ∞,

∑

p≤x
d1,p ∼ Cd1 ,non-CM(E) li(x), if E is without complex multiplication, (2)

∑

p≤x
d1,p ∼ Cd1 ,CM(E) x, if E is with complex multiplication, (3)

where

Cd1 ,non-CM(E) :=
∑

m≥1

φ(m)
[Q(E[m]) : Q] , (4)

Cd1 ,CM(E) := lim
σ→0+

σ
∑

m≥1

φ(m)
[Q(E[m]) : Q] m

−σ , (5)

with φ(m) := #{1 ≤ k ≤ m : (k,m) = 1} denoting the Euler function of m, Q(E[m]) denot-
ing the m-division field of E, and li(x):=

∫ x

2

1
log t dt denoting the standard logarithmic

integral.

Conjecture 2 (Akbary-Ghioca [2, Sect. 1])
Let E/Q be an elliptic curve, with or without complex multiplication. Then, as x → ∞,

∑

p≤x
τ (d1,p) ∼ Cτ (d1)(E) li(x), (6)

where

Cτ (d1)(E) :=
∑

m≥1

1
[Q(E[m]) : Q] . (7)
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Wenote that in the above definitions of the constantsCd1 ,Cτ (d1), aswell as in those of the
forthcoming constants Cd1 ,CM(O), Cτ (d1),CM(O), Bd1 ,CM(O), Bτ (d1),CM(O), the notation d1
and τ (d1) does not refer to specific integers and is purely symbolic; regardless of coinciding
values of d1,p and τ (d1,p), the definitions of Cd1 , Cτ (d1), as well as their variations, are
distinct and independent. We also note that a natural question is whether a conjecture
similar to Conjecture 2 may be formulated regarding the behaviour of τ (d2,p). Since we
have not found such an investigation in the literature, we relegate it to future research.

Conjecture 3 (Freiberg–Kurlberg [17, Sect. 1])
Let E/Q be an elliptic curve, with or without complex multiplication. Then, as x → ∞,

∑

p≤x
d2,p ∼ 1

2Cd2 (E) li
(
x2
)
, (8)

where

Cd2 (E) :=
∑

m≥1

(−1)ω(m)φ(radm)
m[Q(E[m]) : Q] , (9)

with ω(m) :=
∑

ℓ|m 1 denoting the number of distinct prime factors of m and rad(m) :=
∏

ℓ|m ℓ denoting the product of distinct prime factors of m.

The constants Cd1 ,non-CM(E), Cd1 ,CM(E), Cτ (d1)(E), and Cd2 (E) appearing in these con-
jectures are deeply related to the arithmetic of the elliptic curve E/Q and are heuristically
derived via the Chebotarev density theorem by considering the action of a Frobenius
element at p on E[m].
Conjecture 1 was investigated by Freiberg and Pollack [18] in the case that E has com-

plex multiplication; precisely, they proved that
∑

p≤x
d1,p ≍E x. A similar result is not

yet known if E does not have complex multiplication, even under the Generalized Rie-
mannHypothesis. Conjecture 2was investigated byAkbary andGhioca [2]; precisely, they
proved (6) under the Generalized RiemannHypothesis if E is without complexmultiplica-
tion andunconditionally ifE iswith complexmultiplication.Conjecture 3was investigated
by Freiberg and Kurlberg [17]; precisely, they proved (8) under the Generalized Riemann
Hypothesis if E is without complex multiplication, and unconditionally if E is with com-
plex multiplication. The proofs of the main results in [2] and [17] rely upon the methods
of [8] and have been refined in several subsequent works, including [1], [13,14,28], and
[41].
Using ideas originating in [16], Conjectures 1–3 may also be investigated on average

over elliptic curves in families. For any elliptic curve E/Q, there is a unique Weierstrass
equation Ea,b : Y 2 = X3 + aX + b with coefficients a, b ∈ Z satisfying that gcd(a3, b2) is
12-th power free and Ea,b ≃Q E. We will refer to a Weierstrass model Ea,b of this form as
the distinguished model of E. We define the discriminant and height of E by

'(E) := −16(4a3 + 27b2) ̸= 0, H (E) := max
{
|a|3, |b|2

}
, (10)

where the integers a and b are those associated to the distinguished model Ea,b of E.
Finally, for parameters A, B > 2, we consider the family C(A, B) ofQ-isomorphism classes
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of elliptic curves defined by distinguished models Ea,b with |a| ≤ A, |b| ≤ B. Our goal is
to average the Titchmarsh divisor sums of Conjectures 1–3 over E ∈ C(A, B).
In this context, it is natural to consider the following universal versions of the constants

Cd1 ,non-CM(E), Cτ (d1)(E), and Cd2 (E),

Cd1 :=
∑

m≥1

φ(m)
|GL2(Z/mZ)| =

∏

ℓ

(
1+ ℓ2

(ℓ2 − 1)(ℓ3 − 1)

)
= 1.25844835 . . . , (11)

Cτ (d1) :=
∑

m≥1

1
|GL2(Z/mZ)| =

∏

ℓ

(
1+ ℓ3

(ℓ − 1)(ℓ2 − 1)(ℓ4 − 1)

)
= 1.2059016 . . . ,

(12)

Cd2 :=
∑

m≥1

(−1)(ω(m))φ(rad(m))
m|GL2(Z/mZ)| =

∏

ℓ

(
1+ ℓ3

(ℓ2 − 1)(ℓ5 − 1)

)
= 0.89922825 . . . ,

(13)
together with the constants

Cd1 ,CM(O) := lim
σ→0+

σ
∑

m≥1

φ(m)
|(O/mO)×|m

−σ ,

Cτ (d1),CM(O) :=
∑

m≥1

1
|(O/mO)×| ,

Bd1 ,CM(O) := |Aut(O)|L(1,χO)

× min
E′/Q

EndQ(E′)≃O

⎧
⎨

⎩
∏

ℓ|mE′

(
1 − 1

ℓ

)−1
⎛

⎝
∑

m|mE′

φ(m)
[K (E′[m]) : K ]

⎞

⎠

⎫
⎬

⎭ ,

Bτ (d1),CM(O) := |Aut(O)| min
E′/Q

EndQ(E′)≃O

⎧
⎨

⎩
∑

m≥1

1
[K (E′[m]) : K ]

⎫
⎬

⎭

defined for each imaginary quadratic order O of class number 1, with field of fractions K ,
where for any elliptic curve E′/Q with CM by O, the integer mE′ is as in Theorem 11 of
Sect. 2.3. The convergence of these four latter constants is explained in the course of the
proof of part (i) of Theorem 4.
The universal constants Cd1 , Cτ (d1), Cd2 turn out to be the average constants for Con-

jectures 1–3, in the following sense. In [1, Cor 1.6], Akbary and Felix proved that for
any c > 1 and x > e, there exists c1 > 0 such that, for any A = A(x), B = B(x) with
A, B > exp(c1(log x)1/2) and AB > x(log x)4+2c, we have

1
|C(A, B)|

∑

E∈C(A,B)

∑

p≤x
p!'(E)

τ (d1,p(E)) = Cτ (d1) li(x)+O
( x
(log x)c

)
, (14)

1
|C(A, B)|

∑

E∈C(A,B)

∑

p≤x
p!'(E)

d2,p(E) =
1
2Cd2 li(x2)+O

( x2
(log x)c

)
. (15)

These results confirm Conjectures 2–3 on average. Conjecture 1 is also expected to hold
on average; that is, for suitably large A = A(x), B = B(x), we expect

1
|C(A, B)|

∑

E∈C(A,B)
E without CM

∑

p≤x
p!'(E)

d1,p(E) = Cd1 li(x)+ o
( x
log x

)
. (16)
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While this average is open, Akbary and Felix proved related results supporting it (see [1,
Remark 1.7]).
In this paper we investigate the constants Cd1 ,non-CM(E), Cd1 ,CM(E), Cτ (d1)(E), and

Cd2 (E), in relation to the universal constants Cd1 , Cτ (d1), Cd2 , Cd1 ,CM(O), Cτ (d1),CM(O),
Bd1 ,CM(O), Bτ (d1),CM(O). Specifically, using properties of the division fields of E/Q, which
wederive from the celebrated open image theorems for elliptic curveswith complexmulti-
plication (due toWeil in the adelic setting and to Deuring in the classical setting), respec-
tively without complex multiplication (due to Serre), we prove the following theorem,
which gives upper and lower bounds for the conjectural constants under consideration.

Theorem 4 Let E/Q be an elliptic curve.

(i) Assume that EndQ(E) ≃O ̸≃Z. Then, denoting by K the field of fractions of O, by
GK the absolute Galois group of K , by Ô := lim←−m

O/mO, and by ϕE : GK −→ Ô× the

absolute Galois representation associated to E (as described in Sect.2.1 below),

0 <
1
2 Cd1 ,CM(O) ≤ Cd1 ,CM(E)

≤ min
{
Bd1 ,CM(O),

[
Ô× : ϕE(GK )

]
Cd1 ,CM(O)

}
≪ 1,

0 <
1
2 Cτ (d1),CM(O) ≤ Cτ (d1)(E)

≤ min
{
Bτ (d1),CM(O),

[
Ô× : ϕE(GK )

]
Cτ (d1),CM(O)

}
≪ 1.

(ii) Assume that EndQ(E) ≃Z. There exists positive absolute constants β and γ such that

0 < Cd1 ≤ Cd1 ,non-CM(E) ≪
(
max

{
1, logH (E)

})γ ,
0 < Cτ (d1) ≤ Cτ (d1)(E) ≪

(
log log

(
max

{
6, H (E)max{1, logH (E)}γ

}))β ,

where H (E) is the height of the distinguished model of E, as in (10).

The ≪-constants are absolute.

Possible uniform upper bounds for Cd1 ,non-CM(E) and Cτ (d1)(E) will be addressed in
Remark 21 of Sect. 2.5. Note also that while the upper bounds for Cτ (d1)(E) of Theorem
4 also hold for Cd2 (E), uniform lower and upper bounds for this constant were already
addressed by Freiberg andKurlberg [17]. Specifically, they prove that, for any elliptic curve
E/Q,

0 < Cd2 (E) < 1.

Additionally, they prove that

∑

m≥1

µ(m)
[Q(E[m]) : Q] ≤ Cd2 (E) ≤ 1

2

⎛

⎝1+
∑

m≥1

µ(m)
[Q(E[m]) : Q]

⎞

⎠ ,

withµ(m) denoting theMöbius function ofm. For these bounds, note that it is known that
the constant∑m≥1

µ(m)
[Q(E[m]):Q] may be zero, which happens exactly in the case Q(E[2]) =

Q.
Next, by focusing on elliptic curves with maximal Galois action on their torsion points,

we prove explicit formulae for our Titchmarsh divisor constants:
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Theorem 5 Let E/Q be a Serre curve, that is, an elliptic curve overQ whose adelic Galois
representation has maximal image. Let

mE =
{
2
∣∣'sf (E)

∣∣ if 'sf (E) ≡1(mod 4),
4
∣∣'sf (E)

∣∣ otherwise, (17)

where 'sf (E) denotes the squarefree part of the discriminant of any Weierstrass model of
E. Then

Cd1 ,non−CM(E) = Cd1

⎛

⎝1+ 1
m3

E

∏

ℓ|mE

1
(1 − ℓ−2)(1 − ℓ−3)+ ℓ−3

⎞

⎠ , (18)

Cτ (d1)(E) = Cτ (d1)

⎛

⎝1+ 1
m4

E

∏

ℓ|mE

1
(1 − ℓ−1)(1 − ℓ−2)(1 − ℓ−4)+ ℓ−4

⎞

⎠ , (19)

Cd2 (E) = Cd2

⎛

⎝1+ (−1)ω(mE )

m4
E

∏

ℓ|mE

1
(1 − ℓ−2)(1 − ℓ−5) − ℓ−4

⎞

⎠ . (20)

Finally, we use the above two results to prove that the average of the individual constants
gives rise to the universal constant:

Theorem 6 For any A(x), B(x) > 2, tending to infinity with x such that the ratios of their
logarithms remain bounded, we have

lim
x→∞

1
|C(A(x), B(x))|

∑

E∈C(A(x),B(x))
C(E) = C. (21)

Here, the pair (C(E), C) is, respectively, (Cd1 (E), Cd1 ), (Cτ (d1)(E), Cτ (d1 )), and (Cd2 (E), Cd2 ),
with Cd1 (E) denoting Cd1 ,non-CM(E) if E is without complex multiplication, and Cd1 ,CM(E)
if E is with complex multiplication.

Remark 7

(i) The constant γ occurring in Theorem 4 is known as the Masser-Wüstholz con-
stant, originates in [31], and was studied computationally in [27]. The constant mE
occurring in Theorem 5 was first introduced in [24] in relation to Serre’s open image
theorem from [35]. In Sect. 2, we will revisit its original definition (see Theorem 10)
and we will confirm that it satisfies Eq. (17) above (see Proposition 17).

(ii) It is a difficult problem to calculate the constantsCd1 ,non-CM(E),Cd1 ,CM(E),Cτ (d1)(E),
and Cd2 (E) for an arbitrary elliptic curve E/Q. However, the explicit formulae of
Theorem 5 can be used to calculate these constants for Serre curves and to study
Conjectures 1–3 numerically, as done in [9]. Numerical computations of the con-
stants Cd1 ,CM(O), Cτ (d1),CM(O), Bd1 ,CM(O), Bτ (d1),CM(O),

[
Ô× : ϕE(GK )

]
occurring in

part (i) of Theorem 4 are also doable and will be pursued in a different project.
(iii) The universal constants Cd1 and Cτ (d1) provide strict lower bounds for the constants

Cd1 ,non-CM(E) and Cτ (d1)(E) for any elliptic curve E/Q. Furthermore, Theorem 5
shows that these lower bounds are sharp, since one may take a sequence of Serre
curves Ei withmEi approaching infinity, and deduce that Cd1 ,non-CM(Ei) approaches
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Cd1 (respectivelyCτ (d1)(Ei) approachesCτ (d1)). Regarding the constant of Conjecture
3, Theorem 5 implies that Cd2 (E) is never equal to Cd2 when E is a Serre curve. In
summary, the constantsCd1 ,non-CM(E) andCτ (d1)(E) of Conjectures 1 and 2 are never
equal to theuniversal constantsCd1 , andCτ (d1), and the constantCd2 (E) is never equal
to the universal constant Cd2 when E is a Serre curve. This is in contrast to other
questions about reductions of elliptic curves, such as Koblitz’s Conjecture about the
primality of

∣∣E(Fp)
∣∣.

(iv) In Sect. 5,wewill actually prove a stronger result than (21) ofTheorem6bybounding,
from above,

1
|C(A, B)|

∑

E∈C(A,B)

∣∣C(E) − C
∣∣n

for any integer n ≥ 1 and for any A, B > 2; see equations (48), (49), (50), and (51).
(v) Theorem 6 contributes to the research on averages of constants arising in the study

of reductions of elliptic curves over Q, as pursued in [3–5,10], and [23]. It also
complements research on averages of constants arising in the study of all elliptic
curves over the field Fp, as pursued in [12,19,22,26], and [38]. The connection
between the former “global” viewpoint and the latter “local” viewpoint involves the
question of to what extent the reductions of a fixed elliptic curve E/Q behave like
random elliptic curves over Fp. In our average approach we follow the methods of
[23] and realize the global-to-local connection via Theorem 5 and Jones’ result that
most elliptic curves overQ are Serre curves [24]. A conceptual reason of why a result
such as the one of Theorem 6 should hold is given in Remark 23 at the end of Sect. 5.

Notation Throughout the paper, we follow the following standard notation.

• The letters p and ℓ denote rational primes. The letters d, k,m, n denote rational inte-
gers. The letters φ, τ ,ω denote the Euler function, the divisor function, and the prime
factor counting function. For an integer m, |m| denotes its absolute value, rad(m)
its radical, and vℓ(m) its valuation at a prime ℓ. For nonzero integers m, n, m | n∞

denotes that every prime divisor ofm divides n.
• For two functions f, g : D −→ R, with D ⊆C and g positive, we write f (x) = O(g(x))

or f (x) ≪ g(x) if there is a positive constant c1 such that |f (x)| ≤ c1g(x) for all x ∈ D.
If c1 depends on another specified constant c2, we may write f (x) = Oc2 (g(x)) or
f (x) ≪c2 g(x). If c := lim

x→∞
f (x)
g(x) exists, we write f (x) ∼ c g(x).

• For a field K , we write K for a fixed algebraic closure and GK for the absolute Galois
group Gal

(
K/K

)
.

2 Generalities about elliptic curves
In this section, we review the main properties of elliptic curves needed in the proofs of
our main results. While many of these properties are standard (Theorems 8–11), the ones
towards the end of the section (Corollary 13–Theorem 19) are less known, but crucial to
our approach.
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2.1 General notation

For an elliptic curve E/Q, we use the following notation. We denote by j = j(E) the
j-invariant of E. We denote by EndQ(E) and AutQ(E) the endomorphism ring and the
automorphism group of E overQ. We denote by E(Q) and E(Q) the groups ofQ-rational
and Q-rational points of E, and by E(Q)tors and Etors := E(Q)tors their respective torsion
subgroups.
For an integerm ≥ 1, we denote by E[m] :=E(Q)[m] the group ofm-division points of

E(Q). This has the structure of a free Z/mZ-module of rank 2, with a Z/mZ-linear action
of the absolute Galois group GQ. Thus, fixing an isomorphism (Z/mZ)2 → E[m], which
amounts to choosing a Z/mZ-basis for E[m], we obtain a Galois representation

ϕE,m : GQ −→ GL2(Z/mZ).

Note that the m-division field Q(E[m]) of E, defined by adjoining to Q the x and y coor-
dinates of the points in E[m], satisfies

Q(E[m]) = QKer ϕE,m and [Q(E[m]) : Q] =
∣∣Im(ϕE,m)

∣∣ .

Choosing compatible bases for all E[m], we form the inverse limit over m ordered by
divisibility and obtain a continuous adelic Galois representation

ϕE : GQ −→ GL2(Ẑ), (22)

where Ẑ := lim←−m
Z/mZ.

2.2 Endomorphisms

Theorem 8 ([11, Thm 7.30 and p. 261]) Let E/Q be an elliptic curve. The following state-
ments hold.

(i) Either EndQ(E) ≃Z, in which case we say that E is without complex multiplication
(without CM), or EndQ(E) is an order O in an imaginary quadratic field K , in which
case we say that E is with complex multiplication (with CM) by K .

(ii) Furthermore, if EndQ(E) ≃ O ̸≃ Z, then O has class number 1 and j(E) ∈
{j1:=0, j2:=1728, j3, . . . , j13} is one of 13 possible j-invariants.

Note that two elliptic curves of the same j-invariant, while isomorphic overQ, may fail to
be isomorphic overQ; we call such curves twists of each other. An explicit computation of
the Galois cohomology group classifying twists [36, Chap. 3, Cor. 10.2] gives the following:

Lemma 9 Let E/Q, E′/Q be elliptic curves with j(E) = j(E′). Then there exists an extension
L/Q with

[L : Q] ≤ |AutQ(E)| =

⎧
⎪⎪⎨

⎪⎪⎩

6 if j(E) = 0,
4 if j(E) = 1728,
2 else,

such that after base change to L, EL ≃(E′)L.
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2.3 Open image theorems

Theorem 10 ([35]) Let E/Q be an elliptic curve such that EndQ(E) ≃Z. Then ϕE has open
image in GL2(Ẑ), that is, |GL2(Ẑ) : ϕE(GQ)| < ∞. In particular, there exists a smallest
integer mE ≥ 1 such that for any integer m = m1m2 with m1 | m∞

E and gcd(m2, mE) = 1,

ϕE,m(GQ) ≃pr−1
m1 ,d(ϕE,d(GQ)) × GL2(Z/m2Z),

where d := gcd(m1, mE), and prm1 ,d : GL2(Z/m1Z) −→ GL2(Z/dZ) is the natural pro-
jection.

If E/Q has complex multiplication by an order O in an imaginary quadratic field K ,
then ϕE is constrained to respect the extra O-module structure. The projective limit
Ô := lim←−m

O/mO is a free Ẑ-module of rank 2 and K (Etors) = Q(Etors) is a free Ô-module

of rank 1 with an Ô-linear action of GK . Therefore ϕE |GK factors:

GK GL2(Ẑ)

Ô×

ϕE |GK

Theorem 11 ([39,40]) Let E/Q be an elliptic curve such that EndQ(E) ≃O ̸≃Z and let
K := O ⊗Z Q be the associated CM field. Then the representation

ϕE |GK : GK −→ Ô× (23)

has open image in Ô×, that is,
∣∣Ô× : ϕE(GK )

∣∣ < ∞. In particular, there exists a smallest
integer mE ≥ 1 such that for any integer m = m1m2 with m1 | m∞

E and gcd(m2, mE) = 1,

ϕE,m(GK ) ≃pr−1
m1 ,d(ϕE,d(GK )) × (O/m2O)×,

where d := gcd(m1, mE), and prm1 ,d : (O/m1O)× −→ (O/dO)× is the natural projection.

For potential future applications, we record below a uniform bound for
[
Ô× : ϕE(GK )

]
:

Proposition 12 Let O be an imaginary quadratic order associated to some elliptic curve
E/Q (i.e. EndQ(E) ≃O ̸≃Z) and let K := O ⊗Z Q be the associated CM field. Then, for
any other elliptic curve E′ over Q which satisfies EndQ(E′) ≃O, we have

1∣∣Aut(O)
∣∣
[
Ô× : ϕE(GK )

]
≤
[
Ô× : ϕE′ (GK )

]
≤
∣∣Aut(O)

∣∣ [Ô× : ϕE(GK )
]
.

Proof. Lemma 9 implies that there is an isomorphism E −→ E′ defined over a number
field L satisfying [L : Q] ≤ |Aut(O)|. Thus, Etors and E′

tors are isomorphic as GL-modules,
and the proposition follows.

A useful consequence of these open image theorems is:

Corollary 13 Let E/Q be an elliptic curve and let mE be as in Theorem 10, respectively
Theorem 11. Let ℓ | mE and d | mE with ℓ ! d (recall that ℓ denotes a rational prime).

(i) If EndQ(E) ≃Z, then
[
Q
(
E
[
ℓvℓ(mE )+δd

])
: Q
]
= ℓ4δ

[
Q
(
E
[
ℓvℓ(mE )d

])
: Q
]

∀ δ ∈ N .
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(ii) If EndQ(E) ̸≃Z, then
[
K
(
E
[
ℓvℓ(mE )+δd

])
: K
]
= ℓ2δ

[
K
(
E
[
ℓvℓ(mE )d

])
: K
]

∀ δ ∈ N ,

where K ≃EndQ(E) ⊗ Q.

Proof. This follows from Theorems 10 and 11, with m := ℓvℓ(mE )+δd, since when vℓ(mE)
> 0,

# Ker
(
GL2

(
Z/ℓvℓ(mE )+δdZ

)
→ GL2

(
Z/ℓvℓ(mE )dZ

))
= ℓ4δ ,

#Ker
((

O/ℓvℓ(mE )+δdO
)×

−→
(
O/ℓvℓ(mE )dO

)×)
= ℓ2δ .

In applications, it is desirable to explicitly boundmE in termsof the sizeof the coefficients
of E.

Proposition 14 Let E/Q be an elliptic curve such that EndQ(E) ≃Z. Let mE be as in
Theorem 10 and let H (E) be the height of the distinguished model of E. Then there exists a
positive absolute constant γ such that

|GL2(Ẑ) : ϕE(GQ)| ≪
(
max

{
1, logH (E)

})γ ,
mE ≪ H (E)

(
max

{
1, logH (E)

})γ ,

where the ≪-constants are absolute.

Proof. Denote by '(E) the discriminant of the distinguished model of E. The bound
mE ≤ 2 |GL2(Ẑ) : ϕE(GQ)| rad(|'(E)|) follows from the main result in [25], while the
bound |GL2(Ẑ) : ϕE(GQ)| ≪ max{1, logH (E)}γ follows from [42, Theorem 1.1] (see also
[31]). The bound rad(|'(E)|) ≪ H (E) is straightforward.

2.4 Serre curves

Lemma 15 ([35, Sect. 5.5]) Let E/Q be an elliptic curve. Then
∣∣∣GL2

(
Ẑ
)
: ϕE(GQ)

∣∣∣ ≥ 2.

In particular, no elliptic curve E/Q satisfies
∣∣GL2(Z/mZ) : ϕE,m(GQ)

∣∣ = 1 for all integers
m ≥ 1. Rather, the best we can hope for is captured in the following definition:

Definition 16 An elliptic curve E/Q is called a Serre curve if
∣∣∣GL2(Ẑ) : ϕE(GQ)

∣∣∣ = 2, or,
equivalently, if

∣∣GL2(Z/mZ) : ϕE,m(GQ)
∣∣ ≤ 2 ∀m ≥ 1. (24)

Given E/Q and denoting by 'sf (E) the squarefree part of the discriminant '(E) of a
(equivalently any) Weierstrass model for E, in particular of the distinguished model, the
bound in Lemma 15 arises from the containments

Q
(√

'(E)
)

⊆Q (E[2]) , Q
(√

'(E)
)

⊆Q
(
ζ|dE |

)
⊆Q (E[|dE |]) , (25)
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where

dE := disc
(
Q
(√

'(E)
))

=
{

'sf (E) if 'sf (E) ≡1(mod 4),
4'sf (E) otherwise.

The existence of an integer dE satisfying (25) is guaranteed by the Kronecker-Weber
Theorem, since Q

(√
'(E)

)
is abelian over Q; this value of dE minimizes |dE | subject to

(25).) It follows that

ϕE(GQ) ⊆{g ∈ GL2(Ẑ) : ϵ(g) = χE(g)}, (26)

where the two maps

ϵ : GL2(Ẑ) → GL2(Z/2Z) ≃S3 → {±1},
χE : GL2(Ẑ) → Ẑ× → (Z/|dE |Z)× → {±1}

are defined as follows: ϵ is the projection modulo 2 followed by the signature character on
the permutation group S3 (which is also the unique non-trivial multiplicative character
on GL2(Z/2Z)); χE is the determinant map, followed by the reduction modulo |dE |, and
then followed by the Kronecker symbol

(
dE
·
)
.

Proposition 17 Let E/Q be a Serre curve. Then:

(i) EndQ(E) ≃Z;
(ii) E(Q)tors is trivial;
(iii) The integer mE introduced in Theorem 10 satisfies

mE =
{
2
∣∣'sf (E)

∣∣ if 'sf (E) ≡1(mod 4),
4
∣∣'sf (E)

∣∣ otherwise, (27)

where 'sf (E) denotes the squarefree part of '(E);
(iv) For any integer m ≥ 1,

[Q(E[m]) : Q] =
{
|GL2(Z/mZ)| if mE ! m,
1
2 |GL2(Z/mZ)| otherwise. (28)

Proof. (i) We proceed by contradiction. Suppose that EndQ(E) ≃O ̸≃Z and let K =
FracO. For an element a ∈ O\Z, there exists a rational prime ℓ such that the
characteristic polynomial of the action of a on E[ℓ] has two distinct roots modulo
ℓ. The action of GK preserves the two eigenspaces of a mod ℓ, which implies that,
written relative to an eigenbasis, we have

ϕE,ℓ(GK ) ≤
{(

∗ 0
0 ∗

)}

< GL2(Z/ℓZ).

We thus have
∣∣GL2(Z/ℓZ) : ϕE,ℓ(GQ)

∣∣ ≥ ℓ(ℓ + 1) > 2, contradicting (24).
(ii) A nontrivial ℓ-torsion point would similarly give

∣∣GL2(Z/ℓZ) : ϕE,ℓ(GQ)
∣∣ ≥ (ℓ +

1)(ℓ − 1) > 2, contradicting (24).
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(iii) Since the subgroup of GL2(Ẑ) where χE and ϵ agree is already of index 2, and since
E is a Serre curve, we must have equality in (26). The subgroup defined therein is
determined by its image at level

mE = lcm(2, |dE |) =

⎧
⎨

⎩
2|'sf (E)| if 'sf (E) ≡1(mod 4),
4|'sf (E)| otherwise,

verifying (17) and (27).
(iv) Let d | mE and denote by prmE,d : GL2(Z/mEZ) −→ GL2(Z/dZ) the canonical

projection. Since
∣∣GL2(Z/mEZ) : ϕE,mE (GQ)

∣∣ = 2, it follows from the minimality of
mE that

ϕE,d(GQ) = prmE,d
(
ϕE,mE (GQ)

)
=
{
index 2 subgroup of GL2(Z/dZ) if d = mE,
GL2(Z/mZ) if d < mE.

By Theorem 10, this proves (28).

2.5 Two-parameter families of elliptic curves

Lemma 18 Let A, B > 2 and consider the family C(A, B) of Q-isomorphism classes of
elliptic curves E = Ea,b defined by Y 2 = X3 + aX + b with a, b ∈ Z and |a| ≤ A, |b| ≤ B.
Then

1
|C(A, B)|

∑

E∈C(A,B)
E CM

1 ≪ 1
A + 1

B .

More precisely,

#{E ∈ C(A, B) : j(E) = 0} ∼ 2
ζ (6)B,

#{E ∈ C(A, B) : j(E) = 1728} ∼ 2
ζ (4)A,

and, for each of the j-invariants of Theorem 8 (ii) with j ̸= 0, 1728,

#{E ∈ C(A, B) : j(E) = j} ≪ε min
{
A 1

2+ε , B 1
3+ε
}

for any ε > 0. The ≪-constant is absolute, while the ≪ε-constant depends on ε.

Proof. We recall that associated to an elliptic curve Ea,b/Q, and in particular to a Weier-
strass equation Y 2 = X3 + aX + b, we have the j-invariant j(a, b) := 1728 4a3

4a3+27b2 ,
which encodes theQ-isomorphism class of Ea,b: two elliptic curves Ea,b/Q, Ea′ ,b′/Q areQ-
isomorphic if and only if j(a, b) = j(a′, b′); furthermore, Ea,b/Q, Ea′ ,b′/Q areQ-isomorphic
if and only if

∃ u ∈ Q× such that a = u4a′ and b = u6b′. (29)

In view of the above and of Theorem 8(ii), it suffices to estimate the cardinality of

Cj(A, B) :=
{
(a, b) ∈ Z × Z : |a| ≤ A, |b| ≤ B,

'(a, b) ̸= 0, gcd
(
a3, b2

)
is 12th power free, j(a, b) = j

}
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for each of the 13 occurring j-invariants. We will consider the cases j = 0, j = 1728, and
j ̸= 0, 1728 separately.
Note that j(a, b) = 0 is equivalent to a = 0. Thus

∣∣C0(A, B)
∣∣ = #

{
b ∈ Z\{0} : b is 6th power free, |b| ≤ B

}
∼ 2

ζ (6)B (30)

(see [20, p.355 ] for a standard approach towards such asymptotics).
Similarly, note that j(a, b) = 1728 is equivalent to b = 0. Thus

∣∣C1728(A, B)
∣∣ = #

{
a ∈ Z\{0} : a is 4th power free, |a| ≤ A

}
∼ 2

ζ (4)A. (31)

Now let us fix j ̸= 0, 1728. We set c(j) := 4
27
(
1728
j − 1

)
∈ Q×\{0},

Sj(A) :=
{
a ∈ Z\{0} : |a| ≤ A, c(j)a3 = β2 for some β ∈ Z\{0}

}

and

Tj(B) :=
{
b ∈ Z\{0} : |b| ≤ B, 1

c(j)b
2 = α3 for some α ∈ Z\{0}

}
,

and we denote Nj(A) := |Sj(A)| andMj(B) = |Tj(B)|. Noting that 1728 4a3
4a3+27b2 = j if and

only if a3c(j) = b2, we obtain

∣∣Cj(A, B)
∣∣ ≤ min

{
Nj(A),Mj(B)

}
. (32)

Now we bound Nj(A). Let a be an element of Sj(A), and write a = ajã, where ã is the
largest positive factor of a which is relatively prime to c(j). Since c(j)a3j ã3 is the square of
an integer, ã must also be the square of an integer, and since |a| ≤ A, there are at most√
A possibilities for ã. Let k be the number of primes for which the valuation of c(j) is

nonzero. Again, since |a| ≤ A, the number of choices for aj is on the order of (logA)k .
Thus,

Nj(A) ≪ (logA)k
√
A ≪ε A 1

2+ε .

Similarly,Mj(B) ≪ε B 1
3+ε . Thus, by (32),

∣∣Cj(A, B)
∣∣≪ε min

{
A 1

2+ε , B 1
3+ε
}
for any ε > 0.

Combining this with (30) and (31) completes the proof of the lemma.

Theorem 19 ([24, Thm. 4])
Let A, B > 2 and consider the family C(A, B) of Q-isomorphism classes of elliptic curves
E = Ea,b defined by Y 2 = X3 + aX + b with a, b ∈ Z and |a| ≤ A, |b| ≤ B. Then there
exists a positive absolute constant γ ′ such that

1
|C(A, B)|

∑

E∈C(A,B)
E is not a Serre curve

1 ≪ (log min{A, B})γ ′

√min{A, B} ,

where the ≪-constant is absolute.
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3 Constants for non-Serre curves: proof of Theorem 4
In this section we prove Theorem 4, establishing bounds for the constants appearing in
Conjectures 1–3. The key ingredients in the proof are Theorems 10 and 11, Corollary 13,
Proposition 14, and the following lemma about arithmetic functions:

Lemma 20 Let f, g : N\{0} −→ C× be arithmetic functions satisfying:

(i) g is multiplicative;
(ii)

∑

m≥1
|g(m)| converges.

Assume that ∃ M ∈ N\{0} and ∃ κ ∈ C with Re κ > 0 such that:

(iii) ∀ m1 | M∞ and ∀m2 with gcd(m2,M) = 1, we have f (m1m2) = f (m1)g(m2);
(iv) ∀ d | M∞, ∀ ℓ | M with ℓ ! d, and ∀ δ ∈ N , we have f (ℓvℓ(M)+δd) = ℓ−δκ f (ℓvℓ(M)d).

Then
∑

m≥1
|f (m)| ≤

∏

ℓ|M

(
1 − 1

|ℓκ |

)−1
⎛

⎝
∑

m|M
|f (m)|

⎞

⎠

⎛

⎝
∑

m≥1
|g(m)|

⎞

⎠ .

Proof. By (iii) we have the almost-product formula

∑

m≥1
|f (m)| =

⎛

⎝
∑

m|M∞
|f (m)|

⎞

⎠

⎛

⎝
∏

ℓ!M
gℓ

⎞

⎠ ,

where, for each rational prime ℓ, gℓ :=
∑

r≥0
|g(ℓr)| = 1+

∑
r≥1

|g(ℓr)|. Since

∏

ℓ!M
gℓ ≤

∏

ℓ

gℓ =
∑

m≥1
|g(m)|,

it remains to bound
∑

m|M∞ |f (m)|.
Let M = ℓ

α1
1 . . . ℓ

αnn be the prime factorization of M. For each subset I ⊆ {1, . . . , n},
possibly empty, define

MI :=
∏

i∈{1,...,n}\I
ℓ
αi−1
i ,

and for eachm | M∞, whose unique prime factorization we write asm = ℓ
β1
1 . . . ℓ

βnn with
β1 ≥ 0, . . .βn ≥ 0, define

Im := {1 ≤ i ≤ n : βi ≥ αi}.
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Partitioning the integers m | M∞ according to the subsets Im ⊆ {1, . . . , n} and using
property (iv) of f , we obtain

∑

m|M∞
|f (m)| =

∑

I⊆{1,...,n}

∑

m|M∞
Im=I

|f (m)| =
∑

I⊆{1,...,n}

∑

d|MI

∑

(δi)i∈I
δi∈N ∀i

∣∣∣∣∣f
(
∏

i∈I
ℓ
αi+δi
i d

)∣∣∣∣∣

=
∑

I⊆{1,...,n}

⎛

⎝
∑

d|MI

∣∣∣f
(∏

ℓ
αi
i d
)∣∣∣

⎞

⎠

⎛

⎝
∏

i∈I

∑

δi∈N

∣∣∣∣∣
1

ℓ
κδi
i

∣∣∣∣∣

⎞

⎠

≤
∏

ℓ|M

(
1 − 1

|ℓκ |

)−1 ∑

m|M
|f (m)|.

This completes the proof.

Proof of part (i) of Theorem 4 Now assume that E is with CM by an order O in an imagi-
nary quadratic field K .
For lower bounds, we have

0 < Cd1 ,CM(O) = lim
σ→0+

σ
∑

m≥1

φ(m)
|(O/mO)×|m

−σ ≤ 2 lim
σ→0+

σ
∑

m≥1

φ(m)
[Q(E[m]) : Q]m

−σ

= 2Cd1 ,CM(E),

0 < Cτ (d1),CM(O) =
∑

m≥1

1
|(O/mO)×| ≤ 2

∑

m≥1

1
[Q(E[m]) : Q] = 2Cτ (d1)(E). (33)

Regarding upper bounds, we first observe that

Cd1 ,CM(E) ≤ lim
σ→0+

σ
∑

m≥1

φ(m)
|ϕE,m(GK )|

m−σ

= lim
σ→0+

σ
∑

m≥1

φ(m)[(O/mO)× : ϕE,m(GK )]
|(O/mO)×| m−σ

≤
[
Ô× : ϕE(GK )

]
Cd1 ,CM(O), Cτ (d1)(E) ≤

∑

m≥1

[(O/mO)× : ϕE,m(GK )]
|(O/mO)×|

≤
[
Ô× : ϕE(GK )

]
Cτ (d1),CM(O).

In each of these upper bounds, the final inequality is likely not sharp. In what follows, we
will prove another upper bound by using Lemma 20 to compute directly.
First we verify that, for the arbitrary elliptic curve E/Q with CM by the order O in the

imaginary quadratic field K , we have
∑

m≥1

1
[K (E[m]) : K ] < ∞. (34)

Note that this verification is also implicit in the proving convergence of the sums defining
the constants Cτ (d1),CM(O) and Bτ (d1),CM(O) and was alluded to in Sect. 1.
By Theorem 11, for any integer m ≥ 1, written uniquely as m = m1m2 with m1 | m∞

E
and (m2, mE) = 1, we have

[K (E[m]) : K ] = [K (E[m1]) : K ] · 1O(m2), (35)
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where 1O denotes the Euler function on O, that is, 1O(n) :=
∣∣(O/nO)×

∣∣ for any positive
integer n. Defining

f (m) := 1
[K (E[m]) : K ] , g(m) := 1

1O(m) ,

we wish to apply Lemma 20 with M = mE and κ = 2. Condition (i) follows from the
Chinese Remainder Theorem; if (m,m′) = 1, then we have

1O(mm′) := |(O/mm′O)×| = |(O/mO)× × (O/m′O)×| = 1O(m)1O(m′).

Furthermore, since 1O(ℓr) = ℓ2(r−1)1O(ℓ) for all r ≥ 1 and

1O(ℓ) =

⎧
⎪⎨

⎪⎩

(ℓ + 1)(ℓ − 1) if ℓ is inert in O,
(ℓ − 1)2 if ℓ splits in O,
ℓ(ℓ − 1) if ℓ ramifies in O,

we have1O(ℓr) ≥ φ(ℓr)2 for all r ≥ 1.Therefore1O(m) ≥ φ(m)2 for allm ≥ 1. Condition
(ii) hence follows from the convergence of the series

∑
m≥1

1
φ(m)2 . Conditions (iii) and

(iv) follow from (35) and Corollary 13(ii). By Lemma 20, we obtain

∑

m≥1

1
[K (E[m]) : K ] ≤ ζ (2)

⎛

⎝
∑

m|mE

1
[K (E[m]) : K ]

⎞

⎠

⎛

⎝
∑

m≥1

1
1O(m)

⎞

⎠

≤ ζ (2)

⎛

⎝
∑

m|mE

1
[K (E[m]) : K ]

⎞

⎠

⎛

⎝
∑

m≥1

1
φ(m)2

⎞

⎠ < ∞. (36)

which establishes (34).
Our goal is now to establish the bound

∑

m≥1

1
[K (E[m]) : K ] ≤ |AutQ(E)| min

E′/Q
EndQ(E′)≃O

⎧
⎨

⎩
∑

m≥1

1
[K (E′[m]) : K ]

⎫
⎬

⎭ = Bτ (d1),CM(O).

(37)

Recall that, since E is assumed to have CM by O, we have AutQ(E) ≃Aut(O), hence the
given expression on the right hand side above is indeed equal to Bτ (d1),CM(O).
Fix any elliptic curve E′ over Q satisfying EndQ(E′) ≃O and note that, by Lemma 9,

there exists a number field L such that [L : Q] ≤ |AutQ(E)| ≤ 6 and E′ ≃L E. Moreover,
we claim that, for any integerm ≥ 1,

1
|AutQ(E)|

[K (E′[m]) : K ] ≤ [LK (E′[m]) : LK ] ≤ [K (E[m]) : K ]. (38)

Indeed, we have

[K (E′[m]) : K ] = [K (E′[m]) : LK ∩ K (E′[m])] · [LK ∩ K (E′[m]) : K ]
= [LK (E′[m]) : LK ] · [LK ∩ K (E′[m]) : K ]
≤ [LK (E′[m]) : LK ] · [L : Q]
≤ [LK (E′[m]) : LK ] · |AutQ(E)|
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and

[LK (E′[m]) : LK ] = [LK (E[m]) : LK ] = [K (E[m]) : LK ∩ K (E[m])] ≤ [K (E[m]) : K ].

This establishes (38), and, since E′ was arbitrary such that EndQ(E′) ≃O, (37) follows.
We deduce from (37) that

Cτ (d1)(E) =
∑

m≥1

1
[Q(E[m]) : Q] ≤

∑

m≥1

1
[K (E[m]) : K ] ≤ Bτ (d1),CM(O).

Next we prove that

Cd1 ,CM(E) = lim
σ→0+

⎛

⎝σ
∑

m≥1

φ(m)
[Q(E[m]) : Q]m

−σ

⎞

⎠ ≤ Bd1 ,CM(O),

proceeding much as above, as follows. Note that the convergence of the above two con-
stants follows from (36).
Fix σ > 0, let E′ be any elliptic curve over Q with EndQ(E′) ≃O, and define

fσ (m) := φ(m)
[K (E′[m]) : K ]m

−σ , gσ (m) := φ(m)
1O(m)m

−σ .

We wish to apply Lemma 20 with M = mE′ and κ = 1 + σ . Condition (i) follows from
the observation that a product of multiplicative functions is multiplicative. Condition (ii)
follows from the calculation

∑

m≥1
|gσ (m)| =

∑

m≥1

φ(m)
1O(m)m

−σ

=
∏

ℓ

(
1 − χO(ℓ)

ℓ

)−1 (
1 − 1

ℓ1+σ

)−1

= L(1,χO)ζ (1+ σ ) < ∞,

where χO is the character defined by

1O(ℓr) = ℓ2r
(
1 − 1

ℓ

)(
1 − χO(ℓ)

ℓ

)

and L(1,χO) =
∏

ℓ

(
1 − χO(ℓ)

ℓ

)−1
. Conditions (iii) and (iv) follow, as before, from (35)

and Corollary 13(ii). By Lemma 20, we obtain

∑

m≥1

φ(m)
[K (E′[m]) : K ]m

−σ ≤
∏

ℓ|mE′

(
1 − 1

ℓ1+σ

)−1
⎛

⎝
∑

m|mE′

φ(m)
[K (E′[m]) : K ]m

−σ

⎞

⎠

×

⎛

⎝
∑

m≥1

φ(m)
1O(m)m

−σ

⎞

⎠ < ∞.

Observing that

lim
σ→0+

σ
∑

m≥1

φ(m)
1O(m)m

−σ = L(1,χO) lim
σ→0+

σζ (1+ σ ) = L(1,χO),

we deduce that

lim
σ→0+

σ
∑

m≥1

φ(m)
[K (E′[m]) : K ]m

−σ ≤
∏

ℓ|mE

(
1 − 1

ℓ

)−1
⎛

⎝
∑

m|mE

φ(m)
[K (E′[m]) : K ]

⎞

⎠ L(1,χO).



    1 Page 18 of 24 R. Bell et al. Res. Number Theory            (2020) 6:1 

(39)

Using (38) again and recalling that E′ was arbitrary such that EndQ(E′) ≃O, we deduce
that

lim
σ→0+

σ
∑

m≥1

φ(m)
[K (E[m]) : K ]m

−σ ≤ |Aut(O)|L(1,χO) min
E′/Q

EndQ(E′)≃O

∏

ℓ|mE′

×
(
1 − 1

ℓ

)−1
⎛

⎝
∑

m|mE′

φ(m)
[K (E′[m]) : K ]

⎞

⎠ ,

where the right-handexpression is exactly the constantBd1 ,CM(O).TheboundCd1 ,CM(E) ≤
Bd1 ,CM(O) now follows by noting that [K (E[m]) : K ] ≤ [Q(E[m]) : Q]. This completes
part (i) of Theorem 4.

Proof of part (ii) of Theorem 4. We are now assuming that E is without CM, in which case
the first two lower bounds follow directly from the definition. Indeed,

0 < Cd1 =
∑

m≥1

φ(m)
|GL2(Z/mZ)| ≤

∑

m≥1

φ(m)
[Q(E[m]) : Q] = Cd1 ,non-CM(E),

0 < Cτ (d1) =
∑

m≥1

1
|GL2(Z/mZ)| ≤

∑

m≥1

1
[Q(E[m]) : Q] = Cτ (d1)(E).

Next, we observe that we have the upper bounds

Cd1 ,non-CM(E) =
∑

m≥1

φ(m)
|Gal(Q(E[m])/Q)|

=
∑

m≥1

φ(m)[GL2(Z/mZ) : Gal(Q(E[m])/Q)]
|GL2(Z/mZ)|

≤ [GL2(Ẑ) : ϕE(GQ)]Cd1 ,

Cτ (d1)(E) =
∑

m≥1

1
|Gal(Q(E[m])/Q)| =

∑

m≥1

[GL2(Z/mZ) : Gal(Q(E[m])/Q)]
|GL2(Z/mZ)|

≤ [GL2(Ẑ) : ϕE(GQ)]Cτ (d1). (40)

In the case of the constant Cd1 ,non-CM(E), the above upper bound together with Proposi-
tion 14 proves part (ii) of Theorem 4. For the remaining constants, we will establish the
(stronger, in this case) bound

Cτ (d1)(E) ≪ (log logmE)β (41)

for some positive constant β , where mE is the positive integer appearing in Theorem 10.
This bound, together with the upper bound for mE from Proposition 14, will finish the
proof of part (ii) of Theorem 4.
Defining f (m) := 1

[Q(E[m]):Q] and g(m) := 1
|GL2(Z/mZ)| , we apply Lemma 20 with

M = mE and κ = 4. Note that condition (i) follows immediately from the Chinese
Remainder Theorem, condition (ii) follows immediately from

∑

m≥1

1
|GL2(Z/mZ)| <

∑

m≥1

1
m2φ(m)2 < ∞,
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and conditions (iii) and (iv) follow from Theorem 10 and Corollary 13(i). We obtain

Cτ (d1) =
∑

m≥1

1
[Q(E[m]) : Q] ≤ ζ (4)

⎛

⎝
∑

m|mE

1
[Q(E[m]) : Q]

⎞

⎠

⎛

⎝
∑

m≥1

1
|GL2(Z/mZ)|

⎞

⎠

≪
∑

m|mE

1
[Q(E[m]) : Q] . (42)

To analyze the last sum, recall that for any integerm ≥ 1, denoting by ζm a primitivem-th
root of unity, we have Q(ζm) ⊆Q(E[m]); in particular, we have φ(m) | [Q(E[m]) : Q].
Then

∑

m|mE

1
[Q(E[m]) : Q] ≤

∑

m|mE

1
φ(m) ≤

∏

ℓ|mE

⎛

⎝1+ 1
ℓ − 1

∑

r≥0

1
ℓr

⎞

⎠ =
∏

ℓ|mE

(
1+ ℓ

(ℓ − 1)2
)

=
∏

ℓ|mE

(
1+ 1

ℓ

)
·
∏

ℓ|mE

(
1+ 2ℓ − 1

ℓ3 − ℓ2 − ℓ + 1

)

≪
∏

ℓ|mE

(
1+ 1

ℓ

)
≤ exp

⎛

⎝
∑

ℓ|mE

1
ℓ

⎞

⎠ , (43)

where, in the last line, we used the elementary inequality 1 + t ≤ exp t. To understand
the last sum, we proceed in a standard way. We let ℓi denote the i-th prime and we recall
that it satisfies the bound ℓi ≤ i(log i + log log i) (see [34, Theorem 3, p. 69]). Then

∑

ℓ|mE

1
ℓ

≤
∑

i≤ω(mE )

1
ℓi

= log log ℓω(mE ) +O(1)

≤ log logω(mE)+ log log logω(mE)+O(1)
≪ log log logmE, (44)

where, in the second line, we used Mertens’ Theorem
∑

ℓ≤n
1
ℓ
= log log n + O(1), and,

in the last line, we used the bound ω(n) ≤ log n. The desired bound (41) is obtained by
combining (42), (43) and (44). This finishes the proof of Theorem 4.

Remark 21 Denoting byC(E) any of the constants Cd1 ,non-CM(E),Cd1 ,CM(E), orCτ (d1)(E),
and by C the corresponding universal constant, we observe that the upper bounds

C(E) ≤
[
Ô× : ϕE(GK )

]
· C, if E is with CM by the order O, (45)

C(E) ≤
[
GL2(Ẑ) : ϕE(GQ)

]
· C, if E is without CM, (46)

established in Theorem 4, are of a fundamentally different nature one from the other
in terms of what further unconditional upper bounds they may lead to. When E is with
CM by the order O in K , since there are only finitely many j-invariants associated to CM
elliptic curves overQ and since the index

[
Ô× : ϕE(GK )

]
remains bounded in twist families

(see Proposition 12 above), (45) leads to uniform upper bounds for the constants C(E). In
contrast, whenE iswithoutCM, the uniformboundedness of the index

[
GL2(Ẑ) : ϕE(GQ)

]

is equivalent to an affirmative answer to an open question of Serre, known as Serre’s
uniformity question; see [35, Sect. 4.3]. Assuming an affirmative answer to this question,
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it is shown in [43, Theorem 1.3] that, except possibly for elliptic curves with j-invariants
belonging to an ineffective finite set, we have

[
GL2(Ẑ) : ϕE(GQ)

]
≤ 1536. Thus, assuming

an affirmative answer to Serre’s uniformity question, (46) leads to the ineffective uniform
upper bounds

Cτ (d1)(E) ≪ 1, Cd1 (E) ≪ 1. (47)

Further improving (47) to conditional effective uniform upper bounds is an interesting
future topic to explore that would involve techniques different from the ones of our
present paper, in particular techniques used to determine rational points on higher genus
modular curves.

4 Constants for Serre curves: proof of Theorem 5
In this section we prove closed formulae relating the constants of Conjectures 1–3 to the
universal constants (11)–(13), as stated in Theorem 5. The key ingredients in the proof
are Theorem 10 and the following lemma:

Lemma 22 ([29, Lemma 3.12]). Let f, g : N\{0} −→ C× be arithmetic functions satisfying
the following:

(i) g is multiplicative;
(ii)

∑
m≥1

|g(m)| converges.

Assume that ∃ M ∈ N\{0}, ∃ α ∈ (0,∞) and ∃ κ ∈ N\{0, 1} such that:

(iii) ∀m ∈ N\{0}, we have

f (m) =

⎧
⎨

⎩
αg(m) if M | m,
g(m) else;

(iv) ∀ m | M∞, we have g(mM) = m−κg(M).

Then
∑

m≥1
f (m) =

⎛

⎝1+ (α − 1)g(M)
∏

ℓ|M
g−1
ℓ (1 − ℓ−κ )−1

⎞

⎠
∏

ℓ

gℓ,

where, for any rational prime ℓ, gℓ :=
∑

r≥0
g(ℓr).

Proof of Theorem 5. The proposition follows from part (iv) of Proposition 17, Lemma 22
withM = mE and f , g , α, κ as described below, and from summing geometric series. Note
that, by definition,

∏
ℓ
gℓ is the universal constant Cd1 , Cτ (d1), respectively Cd2 .

f (m) g(m) α κ gℓ
Cd1 ,non−CM(E) φ(m)

[Q(E[m]):Q]
φ(m)

|GL2(Z/mZ)| α = 2 κ = 3 1+ 1
ℓ3(1−ℓ−2)(1−ℓ−3)

Cτ (d1)(E) 1
[Q(E[m]):Q]

1
|GL2(Z/mZ)| α = 2 κ = 4 1+ 1

ℓ4(1−ℓ−1)(1−ℓ−2)(1−ℓ−4)
Cd2 (E) (−1)ω(m)φ(rad(m))

m[Q(E[m]):Q]
(−1)ω(m)φ(rad(m))
m|GL2(Z/mZ)| α = 2 κ = 5 1 − 1

ℓ4(1−ℓ−2)(1−ℓ−5) .
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5 Averaging the constants over a family: proof of Theorem 6
In this section we prove Theorem 6 using the results of Sects. 2–4 and following the
approach initiated in [23]. For this, let A, B > 2 and n ∈ N\{0} be fixed and consider the
moment

1
|C(A, B)|

∑

E∈C(A,B)
|C(E) − C|n,

where the pair (C(E), C) is, respectively, (Cd1 (E), Cd1 ), (Cτ (d1)(E), Cτ (d1 )), and (Cd2 (E), Cd2 ),
and where Cd1 (E) is Cd1 ,non-CM(E) if E is without complex multiplication, and Cd1 ,CM(E)
if E is with complex multiplication. Our strategy is to partition C(A, B) into the subset
of elliptic curves with complex multiplication (CM curves), the subset of elliptic curves
without complex multiplication and which are not Serre curves (non-CM & non-Serre
curves), and the subset of Serre curves; we then estimate each emerging subsum via dif-
ferent techniques.

To handle the contribution from elliptic curves with complex multiplication, using part
(i) of Theorem 4 and Lemma 18, we obtain

1
|C(A, B)|

∑

E∈C(A,B)
E CM

|C(E) − C|n ≪n
1

|C(A, B)|
∑

E∈C(A,B)
E CM

1 ≪ 1
A + 1

B . (48)

To handle the contribution from elliptic curves without complex multiplication, which
are not Serre curves, using part (ii) of Theorem 4, as well as Theorem 19, we obtain

1
|C(A, B)|

∑

E∈C(A,B)
E non-CM,
non-Serre

|C(E) − C|n

≪n

(
log log

{
max{A3, B2} · log(max{A3, B2})γ

})βn · (log min{A, B})γ ′

√min{A, B} (49)

for (C(E), C) equal to (Cτ (d1)(E), Cτ (d1 )) or (Cd2 (E), Cd2 ), and

1
|C(A, B)|

∑

E∈C(A,B)
E non-CM,
non-Serre

|C(E) − C|n

≪n
log(max{A3, B2})γn · (log min{A, B})γ ′

√min{A, B} (50)

for (C(E), C) equal to (Cd1 ,non-CM(E), Cd1 ).
To handle the contribution from Serre curves, using Theorem 5 and part (iii) of Propo-

sition 17, we obtain

1
|C(A, B)|

∑

E∈C(A,B)
E Serre

|C(E) − C|n ≪ Cn

|C(A, B)|
∑

E∈C(A,B)
E Serre

1
|'sf (E)|3n

.

Next, following the approach of [23, Sect. 4.2], we choose a parameter z = z(A, B) and
partition the Serre curves E in C(A, B) according to whether |'sf (E)| ≤ z or not. For the
first subsum we use [23, Lemma 22, p. 705], while for the second subsum we use trivial
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estimates:
Cn

|C(A, B)|
∑

E∈C(A,B)
E Serre|'sf (E)|≤z

1
|'sf (E)|3n

+ Cn

|C(A, B)|
∑

E∈C(A,B)
E Serre

|'sf (E)|> z

1
|'sf (E)|3n

≪n
1
AB
(
#
{
(a, b) ∈ Z2 : |a| ≤ A, |b| ≤ B, 4a3

+ 27b2 ̸= 0, |(4a3 + 27b2)sf | ≤ z
}
+ 1

z3n
)

≪ 1
A + z(logA)7(log B)

B + 1
z3nAB .

Upon choosing

z ≍
( 1
A(logA)7(log B)

) 1
3n+1

,

we deduce that
1

|C(A, B)|
∑

E∈C(A,B)
E Serre

|C(E) − C|n ≪n
1
A + (logA) 21n

3n+1 (log B) 3n
3n+1

A 1
3n+1B

. (51)

Now let A = A(x) and B = B(x) be functions tending to infinity with x and such that

lim sup
x→∞

logA(x)
log B(x) < ∞, lim sup

x→∞

log B(x)
logA(x) < ∞. (52)

Then
logmax{A(x)3, B(x)2}
log min{A(x)3, B(x)2} ≪ 1,

which implies that there exists a ε > 0 for which
1

min{A(x)3, B(x)2} ≤ 1
max{A(x)3, B(x)2}ε .

From this it follows that

lim
x→∞

(
log log

{
max{A(x)3, B(x)2} · log(max{A(x)3, B(x)2})γ

})βn
√
min{A(x), B(x)}/(log min{A(x), B(x)})γ ′ = 0

and, similarly

lim
x→∞

log(max{A(x)3, B(x)2})γn
√
min{A(x), B(x)}/(log min{A(x), B(x)})γ ′ = 0.

Recalling (48), (49), (50), and (51), it then follows that

lim
x→∞

1
|C(A(x), B(x))|

∑

E∈C(A(x),B(x))
|C(E) − C|n = 0,

finishing the proof of Theorem 6.

Remark 23 One may view the results of Theorems 5 and 6 in the following light. The
universal elliptic curve

E : y2 = x3 − 108j
j − 1728x − 432j

j − 1728
over the rational function field Q(j), where j is a formal variable, satisfies j(E) = j; thus,
for any elliptic curve E0/Q, the specialization Ej0 of E at j0 := j(E0) yields an elliptic curve
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over Q that is Q-isomorphic to E0. Furthermore, the Galois representation associated to
the generic fiber is onto GL2

(
Ẑ
)
, i.e.

ϕE

(
Gal
(
Q(j)/Q(j)

))
= GL2

(
Ẑ
)
.

(This follows, for instance, by considering specializations that give Serre curves E/Q
with distinct values of 'sf (E).) Using our previous general notation for the constants
considered, since each universal constant C is the individual constant C(E) associated to
E , the fact that all elliptic curves E/Q (up to Q-isomorphism) arise as specializations of
the elliptic curve E/Q(j), whose generic fiber has surjective Galois image, may explain,
conceptually, why elliptic curves E/Q have constants C(E) that average out to C .
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