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Let A be an abelian variety over Q of dimension g such that the image of its associated

absolute Galois representation ρA is open in GSp2g(Ẑ). We investigate the arithmetic of

the traces a1,p of the Frobenius at p in Gal(Q/Q) under ρA. In particular, we obtain upper

bounds for the counting function #{p ≤ x : a1,p = t} and we prove an Erdös–Kac-type

theorem for the number of prime factors of a1,p. We also formulate a conjecture about the

asymptotic behaviour of #{p ≤ x : a1,p = t}, which generalizes a well-known conjecture

of Lang and Trotter from 1976 about elliptic curves.
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1 Introduction

Given an abelian variety A/Q, its reductions Ap/Fp modulo primes encode deep arith-

metic global information. A primary question related to these reductions concerns their

p-Weil polynomials, in particular the coefficients of these polynomials.

In the simplest case when A has dimension 1, that is, when A is an elliptic

curve over Q, for each prime p of good reduction the p-Weil polynomial is PA,p(X) =
X2 − apX + p ∈ Z[X ], where ap := p + 1 − |Ap(Fp)|. The coefficient ap satisfies the Weil

bound |ap| < 2
√
p and is of major significance in number theory. For example, it appears

as the pth Fourier coefficient in the expansion of the weight 2 newform associated to A.

The study of ap comes in several flavours, some having led to well-known problems in

arithmetic geometry, such as the Sato–Tate Conjecture from the 1960s (now a theorem)

and the Lang–Trotter Conjecture on Frobenius traces from the 1970s (still open).

Briefly, the Lang–Trotter Conjecture [35] on the behaviour of ap predicts that for

every elliptic curve A/Q and every integer t ∈ Z, if EndQ(A) ≃ Z or t ̸= 0, and if we write

NA for the product of the primes of bad reduction for A, then either there are at most

finitely many primes p such that ap = t or there exists a constant c(A, t) > 0 such that,

as x →∞,

πA(x, t) := #
{
p ≤ x : p ! NA,ap = t

}
∼ c(A, t)

√
x

log x
. (1)

The constant c(A, t) has a precise heuristic description derived from the Chebotarev

Density Theorem, combined with the Sato–Tate Conjecture when EndQ(A) ≃ Z and with

a prime distribution law arising from works of Deuring and Hecke when EndQ(A) ̸≃ Z.
While the Lang–Trotter Conjecture remains open, several remarkable related

results have been proven. When EndQ(A) ̸≃ Z (the CM case) and t ̸= 0, upper

bounds of the right order of magnitude can be proved using sieve methods. When

EndQ(A) ≃ Z and t ̸= 0, weaker upper bounds, unconditional or conditional

(upon the Generalized Riemann Hypothesis, GRH), can be proved using effective

versions of the Chebotarev Density Theorem; such bounds were first obtained by

Serre [42, Theorem 20]. The currently best unconditional upper bound, πA(x, t) ≪A

x(log log x)2

(log x)2
, was obtained by V. K. Murty [38, Theorem 5.1] (see [48] for an earlier

result), while the currently best upper bound under GRH, πA(x, t) ≪A
x
4
5

(log x)
1
5
, was

obtained by Murty, Murty, and Saradha [37, Theorem 4.2] (for very recent improve-

ments on the exponent of the log x factor, see [52]). When EndQ(A) ≃ Z and t = 0,

stronger results are known; in particular, the unconditional bounds log log log x
(log log log log x)1+ε ≪ε
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πA(x, 0)≪x
3
4 were obtained by Fouvry andM. R.Murty [22, Theorem 1] and, respectively,

by Elkies [19] using, as a key tool, Deuring’s characterization of supersingular

primes [17].

Inspired by these works, the main goal of our article is to investigate the arith-

metic of the Frobenius traces of a generic higher-dimensional abelian variety A/Q; in

particular:

(i) we will prove upper bounds for the generalization of the counting function

πA(x, t) and deduce results on the growth of the Frobenius traces;

(ii) we will determine the normal order of the sequence defined by the prime

divisor function of the Frobenius traces, and,more generally, wewill prove

an Erdös–Kac-type result for this sequence;

(iii) under suitable hypotheses, we will formulate a generalization of (1).

Our main results mark only the beginning of such investigations in higher dimensions

and we hope shall stimulate further research.

Our main setting and notation are as follows. Let A/Q be a principally polarized

abelian variety of dimension g. Let Q denote an algebraic closure of Q and let EndQ(A)

denote the endomorphism ring of A over Q. Let NA be the product of primes of bad

reduction for A.

We denote by

ρA : Gal
(
Q/Q

)
−→ GSp2g(Ẑ)

the absolute Galois representation defined by the inverse limit of the representations

ρ̄A,m : Gal(Q/Q) −→ GSp2g(Z/mZ)

of Gal(Q/Q) on the m-torsion A[m] ⊂ A(Q) for each integer m ≥ 1. For each prime ℓ we

denote by

ρA,ℓ : Gal
(
Q/Q

)
−→ GSp2g(Zℓ)

the ℓ-adic representation, that is, the representation of Gal(Q/Q) on the ℓ-adic Tate

module lim
←

A[ℓn].
For each prime p ! NA, we consider the p-Weil polynomial PA,p(X) of A, which is

uniquely determined by the property that

PA,p(X) = det
(
XI2g − ρA,ℓ

(
Frobp

))
(2)
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for any prime ℓ ̸= p. In particular, we have

PA,p(X) ≡ det
(
XI2g − ρ̄A,m

(
Frobp

))
(modm) (3)

for any integer m coprime to p. We write

PA,p(X) = X2g + a1,pX2g−1 + · · · + ag,pXg + pag−1,pXg−1 + · · · + pg−1a1,pX + pg ∈ Z[X ],

where the integers ai,p, 1 ≤ i ≤ g− 1, are independent of ℓ.

For any integer t ∈ Z, we consider the function

πA(x, t) := #
{
p ≤ x : p ! NA,a1,p = t

}
.

The reasonwe usually impose the restriction that our abelian varieties be princi-

pally polarized is for ease of notation. When the abelian variety is principally polarized,

the image of the ℓ-adic representation ρA,ℓ lies in GSp2g(Zℓ). Without the restriction on

the polarization, the image lies in a group that can be defined by replacing the matrix

J2g of Section 2.1 below with a matrix that has a more complicated description, and our

results could be modified accordingly; see, for example, Section 2.3 of [43] for the group

of symplectic similitudes in this general setting.

Theorem 1. Let A/Q be a principally polarized abelian variety of dimension g and let

t ∈ Z. Assume that Im ρA is open in GSp2g(Ẑ). Define

α := 1
2g2 + g+ 1

, β :=
{

1
3 if g = 1,
1

2g2−g+3
if g ≥ 2,

γ :=

⎧
⎪⎪⎨

⎪⎪⎩

1
2 if g = 1,
1
8 if g = 2,
1

2g2−g+1
if g ≥ 3.

For any ε > 0 we have:

(i1) unconditionally,

πA(x, t)≪A,ε
x

(log x)1+α−ε ;

(i2) under GRH,

πA(x, t)≪A,ε x1− α2 +ε;
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(ii) if t ̸= ±2g, then (i1) and (i2) hold with α replaced by β;

(iii) if t = 0, then (i1) and (i2) hold with α replaced by γ . !

Wewill actually prove a more general result, stated as Theorem 14 in Section 4, and that

the case g = 1 of Theorem 1 is [42, Theorem 20, p. 189].

An immediate consequence of Theorem 1 concerns the non-lacunarity of the

sequence (a1,p)p:

Corollary 2. We keep the setting and notation of Theorem 1. For any ε > 0 we have:

(i) unconditionally,

#
{
p ≤ x : p ! NA, |a1,p| ≥ (logp)α−ε

}
∼ π(x);

(ii) under GRH,

#
{
p ≤ x : p ! NA, |a1,p| ≥ p

α
2−ε
}
∼ π(x). !

Recall that ν(n) denotes the number of distinct prime factors of a positive integer

n and that an arithmetic function f (·) is said to have normal order F(·) if for all ε > 0,

then (1−ε)F(n) < f (n) < (1+ε)F(n) for all but a zero density subset of positive integers

n. It is a classical result of Erdös, originating in work of Hardy and Ramanujan [25],

that ν(p− 1) has normal order log logp. More generally, Erdös and Kac [20] proved that

ν(p − 1) has a normal distribution. Variations of these results have also been obtained

in arithmetic geometric contexts, including that of modular forms [36]. We now prove

such results in the context of abelian varieties:

Theorem 3. Let A/Q be a principally polarized abelian variety of dimension g. Assume

that Im ρA is open in GSp2g(Ẑ). Under GRH we have that, for any τ ∈ R,

lim
x→∞

#
{
p ≤ x : p ! NA,a1,p ̸= 0, ν(a1,p) ≤ log logp+ τ

√
log logp

}

π(x)
= 1√

2π

∫ τ

−∞
e−

t2
2 dt. (4)

In particular, ν(a1,p) has normal order log logp. !

The case g = 1 not only recovers but also generalizes the main theorem of [36] for weight

2 newforms that are not of CM type.
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Finally, in Conjecture 4 below we propose a generalization of (1) to the case of

higher-dimensional abelian varieties for which Im ρA is open in GSp2g(Ẑ) and for which

the following holds:

Equidistribution assumption: the normalized traces
a1,p√
p are equidistributed on

[−2g, 2g]with respect to theprojectionby the tracemapof the (normalized)Haarmeasure

of the unitary symplectic group USp(2g).

The assumption that Im ρA is open in GSp2g(Ẑ) gives rise to an integer mA ≥ 1

that is the smallest positive integer m such that

ρA(Gal(Q/Q)) = *−1(Im ρ̄A,m),

with * : GSp2g(Ẑ) −→ GSp2g(Z/mZ) the natural projection.

The Equidistribution Assumption gives rise to a continuous function + :

[−1, 1] −→ [0,∞), nonzero at 0, with the property that for every interval I ⊆ [−1, 1]
we have

lim
x→∞

#
{
p ≤ x : p ! NA,

a1,p
2g
√
p ∈ I

}

π(x)
=
∫

I
+(t) dt.

We propose:

Conjecture 4. Let A/Q be a principally polarized abelian variety of dimension g and

let t ∈ Z, t ̸= 0. Assume that Im ρA is open in GSp2g(Ẑ) and that the Equidistribution

Assumption holds. Then, as x →∞,

πA(x, t) ∼ c(A, t)
√
x

log x
,

where

c(A, t) := +(0)

g
· mA,t|C(mA,t, t)|

| Im ρ̄A,mA,t |
·

×
∏

ℓ!mA

ℓvℓ(t)+1 |{M ∈ GSp2g(Z/ℓvℓ(t)+1Z) : trM ≡ t(mod ℓvℓ(t)+1)}|
|GSp2g(Z/ℓvℓ(t)+1Z)| ,

the integers vℓ(t) ≥ 0 are defined by ℓvℓ(t)|t, ℓvℓ(t)+1 ! t, and

mA,t := mA

∏

ℓ|mA

ℓvℓ(t),

C(mA,t, t) :=
{
M ∈ Im ρ̄A,mA,t : trM ≡ t(modmA,t)

}
.
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If c(A, t) = 0, we interpret the asymptotic as saying that there are at most finitely many

primes p such that a1,p = t. !

For a discussion about the possible growth of πA(x, 0), see Section 5.

Remark 5. The image of ρA is open in GSp2g(Ẑ) for a large class of abelian varieties.

Indeed, in [43, 44] Serre showed that this holdswhenever EndQ(A) ≃ Z and the dimension

g of A is 1, 2, 6, or an odd number. An open image result also holds when EndQ(A) ≃ Z
and there exists a number field K such that the Néron model of A/K over the ring of

integers of K has a semistable fibre of toric dimension 1; see [24]. As pointed out in

[24, p. 704], for g ≥ 2 the image of ρA is open in GSp2g(Ẑ) for most abelian g-folds that

arise as Jacobians of hyperelliptic curves defined by y2 = f (x) with the degree n of the

monic polynomial f ∈ Z[x] equal to 2g+1 or 2g+2. Specifically, the hypotheses in Hall’s

Theorem are satisfied if the Galois group of f is Sn, or if there exists a rational prime p

for which f (modp) has n − 1 distinct zeroes over an algebraic closure, one of which is

a double zero; see Kowalski’s appendix in [24] and Zarhin’s article [50]. !

Remark 6. When Im ρA is open in GSp2g(Ẑ), the Equidistribution Assumption is a very

special case of a general conjecture explained in Section 13 of [45, Conjecture 13.5] that

generalizes the Sato–Tate Conjecture. See also [15, pp. 173–174, 797–804, 906] and [40].

!

Remark 7. Generalizations of the Lang–Trotter Conjecture (1) have been previously

considered by other authors. For example, in [39], V. K. Murty addressed generalizations

in the setting of modular forms, while in [28, pp. 421–423], Katz addressed generaliza-

tions in the setting of abelian varieties arising as Jacobians of genus g curves. Our

conjecture encompasses a generic class of abelian varieties A and is precise in terms of

both the growth in x and the constant depending on A and t. The potential vanishing of

the constant c(A, t) is an important open problem in itself. In [28, p. 420], for instance,

Katz discusses a general mechanism that leads to congruence obstructions for realizing

a1,p = t. We relegate this study to future work. !

The paper is structured as follows. In Section 2 we present some of the key

results needed for proving Theorem 1, Corollary 2, and Theorem 3, and for arguing

towards Conjecture 4. In Section 3we prove Theorem 1 andCorollary 2 using the strategy

of [42, Sections 7–8] and also with the help of the main result of Serre’s Appendix 1

of this aricle. In Section 4 we prove Theorem 3 following a general strategy of [5]. In
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Section 5 we provide our heuristic reasoning towards Conjecture 4 and address some

connections with existing works. In Section 6 we provide computational data related

to our theoretical investigations. J-P. Serre supplied two appendices: the first gives a

result on the dimension of conjugacy classes in symplectic groups, while the second

gives properties of a certain density function for unitary symplectic groups.

2 Generalities

2.1 Basic notation

Along with the standard analytic notation O, ≪, ≫, o, ∼,

π(x) := #{p ≤ x : p prime},

lix :=
∫ x

2

1
log t

dt,

we use p and ℓ to denote rational primes; we write n|m∞ to mean that all the prime

divisors of n occur among the prime divisors of m, possibly with higher multiplicities;

we write n||m to mean that n|m, but n2 ! m; we write vℓ(n) for the valuation of n at ℓ.

For a commutative, unitary ring R and a positive integer g, we denote by R× its

group of units, by Ig ∈ Mg(R), I2g ∈ M2g(R) the identity matrices, and by

J2g :=
(

0 Ig
−Ig 0

)

∈ M2g(R).

We recall that the general symplectic group on R is defined by

GSp2g(R) :=
{
M ∈ GL2g(R) : M tJ2gM = µJ2g for some µ ∈ R×

}
,

where M t denotes the transpose of M , while

Sp2g(R) :=
{
M ∈ GL2g(R) : M tJ2gM = J2g

}
.

We note that GSp2(R) = GL2(R). We recall that GSp2g(R) has centre {µI2g : µ ∈ R×} and
that, as an algebraic group, it has dimension 2g2 + g+ 1.

For R = C, we recall that the unitary symplectic group is defined by

USp(2g) :=
{
M ∈ Sp2g(C) : M

t
M = MM

t = I2g
}
.
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2.2 The Chebotarev density theorem

2.2.1 Finite extensions of a number field

Let L/K be a finite Galois extension of number fields and letG be its Galois group.

Let C be a non-empty subset of G that is stable under conjugation. For any x > 0, let

πC(x,L/K) := #{p a place of K, unramified in L/K : NK/Q(p) ≤ x, Frobp ⊆ C}.

The Chebotarev Density Theorem states that

πC(x,L/K) ∼ |C|
|G|π(x).

We will use the following conditional effective version of this theorem:

Theorem 8 ([34]; for this version see [42, Theorem 4, p. 133]). Keep the above setting

and notation. Assume GRH for the Dedekind zeta function of L. Then there exists an

absolute constant c > 0 such that
∣∣∣∣πC(x,L/K)− |C|

|G|π(x)

∣∣∣∣ ≤ c
|C|
|G|x

1
2 (log |disc(L/Q)| + |L : Q| log x) . !

In order to apply this theorem, the following variation of a result of Hensel [26], proved

in [42], is useful:

Proposition 9 ([42, Proposition 5, p. 129]). Keep the above setting and notation. Then

log
∣∣NK/Q(disc(L/K))

∣∣ ≤ (|L : Q|− |K : Q|)

⎛

⎝
∑

p∈P(L/K)

logp

⎞

⎠+ |L : Q| log |L : K|,

where

P(L/K) := {primes p : there is a place p of K, ramified in L/K, with p|p}. !

2.2.2 ℓ-adic extensions of a number field

In [42], Serre used the effective versions of the Chebotarev Density Theorem of

Lagarias and Odlyzko [34] to deduce upper bounds for πC(x,L/K) in the case of an ℓ-adic

Galois extension L/K of a number field K. We recall his main results below.

Let K be a number field. Let ℓ be a rational prime and G a compact ℓ-adic Lie

group of dimension D. Denote by Z(G) the centre of G. Let C ⊆ G be a non-empty closed

subset of G that is stable under conjugation. In [42, Section 3] Serre explains what it



3566 A. C. Cojocaru et al.

means for theMinkowski dimension dimM C of C to be≤ d. Let L/K be an infinite Galois

extension, with Galois group G. For any x > 0, let

πC(x,L/K) := #{p a place of K, unramified in L/K : NK/Q(p) ≤ x, Frobp ⊆ C}.

Following [42, p. 151], we define

ϵ(x) := log x
(log log x)2(log log log x)

and ϵR(x) := x
1
2

(log x)2
.

Theorem 10 ([42, Theorem 10, p. 151]). Keep the above setting and notation. Let 0 ≤ d <

D be such that theMinkowski dimension of C satisfies dimM C ≤ d. Define α := D− d
D

.

(i) Unconditionally, we have

πC(x,L/K)≪K,L,C
lix
ϵ(x)α

.

In particular, for any ε > 0, we have

πC(x,L/K)≪K,L,C,ε
x

(log x)1+α−ε .

(ii) Under GRH for Dedekind zeta functions, we have

πC(x,L/K)≪K,L,C
lix
ϵR(x)α

.

In particular, for any ε > 0, we have

πC(x,L/K)≪K,L,C,ε x1− α2 +ε. !

Serre obtains the following improvement in special cases:

Theorem 11 ([42, Theorem 12, p. 157]). Keep the above setting and notation. Let 0 ≤
d < D be such that the Minkowski dimension of C satisfies dimM C ≤ d. Define

rC := inf
M∈C

dim
G

ZG(M)
,

where ZG(M) denotes the centralizer of M in G. Define

βC := D− d
D− rC

2

.

Then (i) and (ii) of Theorem 10 hold with βC in place of α. !
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Note that rC ≥ 0, hence βC ≥ α and so Theorem 11 is Theorem 10 when βC = α.

When rC ≥ 1, hence βC > α, Theorem 11 improves upon Theorem 10. This happens when

C ∩ Z(G) = ∅.

2.3 Abelian varieties

Let A/Q be an abelian variety of dimension g and let p be a prime of good reduction.

Recall that for any root π ∈ C of PA,p(X) we have |π | = √p, hence

|a1,p| < 2g
√
p. (5)

Property (2) links the p-Weil polynomial PA,p(X) to the division fields of A, in

particular to the Galois representation defining ρA.

For arbitrary integers m ≥ 1 and t, we set

G(m) := Im ρ̄A,m,

C(m, t) := {M ∈ G(m) : trM ≡ t(modm)}.

We recall that:

• by the Néron–Ogg–Shafarevich criterion,

the extension Q(A[m])/Q is unramified outside mNA; (6)

• by the injectivity of the restriction of ρ̄A,m to Gal(Q(A[m])/Q),

|G(m)| ≤ |GSp2g(Z/mZ)| ≤m2g2+g+1. (7)

Inmany cases, the image of the representation ρA is better understood. For exam-

ple, as alreadymentioned inRemark 5 of Section 1, for several classes of abelian varieties

A/Q with a trivial endomorphism ring, Im ρA is open in GSp2g(Ẑ). In particular, for such

A we have that:

• Im ρA,ℓ is open in GSp2g(Zℓ) for all rational primes ℓ;
• G(ℓ) ≃ GSp2g(Z/ℓZ) for all but finitely many rational primes ℓ.

Lemma12 belowgives further consequences of the openness of Im ρA in GSp2g(Ẑ).

To state the lemma, we introduce the following notation:

Ft(m) := m|C(m, t)|
|G(m)| , Ht(m) := m|{M ∈ GSp2g(Z/mZ) : trM ≡ t(modm)}|

|GSp2g(Z/mZ)| ;
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for a sequence (sn)n,

lim
m →̃ ∞

sm := lim
n→∞

smn with mn :=
∏

ℓ≤n
ℓn.

Lemma 12. Let A/Q be a principally polarized abelian variety of dimension g such that

Im ρA is open in GSp2g(Ẑ).

(i) There exists an integer m ≥ 1 such that ρA(Gal(Q/Q)) = *−1(G(m)), where

we recall that

* : GSp2g(Ẑ) −→ GSp2g(Z/mZ)

is the natural projection. Denote by mA the least such integer.

(ii) For all positive integers m1,m2 with m1|m∞A and (m2,mA) = 1, we have

G(m1m2) ≃ G(m1)× G(m2) = G(m1)× GSp2g(Z/m2Z).

(iii) For all t ∈ Z we have

∏

ℓ

Ht(ℓ) <∞.

In particular, if t ̸= 0, then

∏

ℓ!mA

Ht
(
ℓvℓ(t)+1

)
<∞.

(iv) For all t ∈ Z, t ̸= 0, we have

lim
m →̃ ∞

Ft(m) = Ft

⎛

⎝mA

∏

ℓ|mA

ℓvℓ(t)

⎞

⎠ ·
∏

ℓ!mA

Ht
(
ℓvℓ(t)+1

)
. !

Proof. Parts (i) and (ii) are clear from the openness assumption on Im ρA. For part (iii),

let ℓ ! mA and t be fixed. First, we will show that

ℓ |C(ℓ, t)|
|GSp2g(Z/ℓZ)| = 1 + O

(
1
ℓ

)
. (8)

Recall that the multiplicator of GSp2g(Z/ℓZ) is the character of GSp2g(Z/ℓZ) with

kernel Sp2g(Z/ℓZ); we denote it bymult. Let char(M)denote the characteristic polynomial

of a square matrix M . For γ ∈ (Z/ℓZ)×, define

GSp2g(Z/ℓZ)γ := mult−1(γ ),

C(ℓ, t)γ := C(ℓ, t) ∩ GSp2g(Z/ℓZ)γ ,
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G(ℓ)γ :=
{
char(M) : M ∈ GSp2g(Z/ℓZ)γ

}
,

C(ℓ, t)γ := {M ∈ G(ℓ)γ : trM = t} .

By [1, Lemma 2.4, p. 631],

(
ℓ

ℓ+ 1

)2g2+g |C(ℓ, t)γ |
|G(ℓ)γ | ≤

|C(ℓ, t)γ |
|Sp2g(Z/ℓZ)| ≤

(
ℓ

ℓ− 1

)2g2+g |C(ℓ, t)γ |
|G(ℓ)γ | .

Noting that |C(ℓ, t)γ | = ℓg−1 and |G(ℓ)γ | = ℓg, we deduce that

(
ℓ

ℓ+ 1

)2g2+g
· 1
ℓ
≤ |C(ℓ, t)γ |

|Sp2g(Z/ℓZ)| ≤
(

ℓ

ℓ− 1

)2g2+g
· 1
ℓ
.

Combining the above inequalities for all γ ∈ (Z/ℓZ)× and multiplying by ℓ gives

(
ℓ

ℓ+ 1

)2g2+g
≤ ℓ |C(ℓ, t)|

|GSp2g(Z/ℓZ)| ≤
(

ℓ

ℓ− 1

)2g2+g
.

This completes the proof of (8).

Next we will prove that

ℓ |C(ℓ, t)|
|GSp2g(Z/ℓZ)| = 1 + O

(
1
ℓ2

)
. (9)

This ensures the convergence of the infinite product
∏

ℓ

Ht(ℓ), proving (iii).

We first prove (9) for t ̸= 0. For this, observe that for any t1, t2 ∈ Z we have

t1 ≡ t2(mod ℓ) ⇒ C(ℓ, t1) = C(ℓ, t2)

and

t1 ̸≡ 0(mod ℓ), t2 ̸≡ 0(mod ℓ) ⇒ |C(ℓ, t1)| = |C(ℓ, t2)|.

Indeed, the first assertion is trivial, while the second assertion follows by noting that, if

t1 ̸≡ 0(mod ℓ) and t2 ̸≡ 0(mod ℓ), then the endomorphism
[
t2t−11

]
of GSp2g(Z/ℓZ) defined

by multiplication by t2t−11 is a bijection satisfying that
[
t2t−11

]
(C(ℓ, t1)) = C(ℓ, t2).

From the above observations,

|GSp2g(Z/ℓZ)| = |C(ℓ, 0)| + (ℓ− 1) |C(ℓ, t)|.

It is now easy to show that (9) follows from this along with (8) for |C(ℓ, 0)|.
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Now we prove (9) for t = 0. When g = 1, a straightforward calculation gives that

|C(ℓ, 0)| = ℓ3 − ℓ2

and so

ℓ|C(ℓ, 0)|
|GL2(Z/ℓZ)| = ℓ3(ℓ− 1)

ℓ(ℓ− 1)(ℓ2 − 1)
= ℓ2

ℓ2 − 1
= 1 + O

(
1
ℓ2

)
.

When g ≥ 2, we proceed as follows. By [32, Theorem 5.3, p. 170],

|C(ℓ, t)| = g(ℓ) +
{
−ℓ−1f (ℓ) if t ̸= 0,

ℓ−1(ℓ− 1)f (ℓ) if t = 0,
(10)

for some explicit polynomials f (ℓ) and g(ℓ) in ℓ. Of relevance to us is that the degree dg(ℓ)

of the leading term of g(ℓ) in ℓ satisfies

dg(ℓ) = 2g2 + g, (11)

and that the degree df (ℓ) of the leading term of f (ℓ) in ℓ, while less explicit, can be shown

to satisfy

df (ℓ) ≤
3g2

2
+ g

2
+ 1. (12)

Before justifying this bound, let us complete the proof of (9) for t = 0, g ≥ 2.

From (10), we see that for any t ̸= 0,

|C(ℓ, 0)| = f (ℓ) + |C(ℓ, t)|.

Since we already know (9) for t ̸= 0, it suffices to show that

ℓf (ℓ)

|GSp2g(Z/ℓZ)| = O
(
1
ℓ2

)
.

This follows from (11) and (12), as well as the assumption that g ≥ 2; indeed,

dg(ℓ) − df (ℓ) ≥
g2

2
+ g

2
− 1 ≥ 2.

Consequently, (9) holds for t = 0, g ≥ 2.
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Finally, let us justify (12). The expression for f (ℓ) is rather delicate; indeed, Kim

showed that

f (ℓ) = ℓg
2−1

⌊g/2⌋∑

b=0

ℓb(b+1)

2b−1∏

m=0

(ℓg−m − 1)

(ℓ2b−m − 1)

b∏

j=1

(ℓ2j−1 − 1)

⌊(g−2b+2)/2⌋∑

k=1

ℓk

×
∑

α∈F×ℓ

K(α)g−2b+2−2k
∑

j1,...,jk−1
2k−1≤jk−1≤···≤j1≤g−2b+1

k−1∏

v=1

(ℓjv−2v − 1), (13)

where K(α) is the ordinary Kloosterman sum

K(α) = K(λ;α, 1) :=
∑

a∈F×q

λ(aα + a−1)

for any non-trivial additive character λ of Fq.

To find the leading term, we first focus on

∑

α∈F×ℓ

K(α)r

for an arbitrary integer r ≥ 0.

When r = 0, the sum is simply ℓ− 1. When r = 1, by Weil’s estimate on Kloost-

erman sums |K(α)| ≤ 2
√
ℓ, we deduce that

∣∣∣
∑

α∈F×ℓ
K(α)

∣∣∣ ≤ ℓ2. When r ≥ 2, Kim remarks

that

∑

α∈F×ℓ

K(α)r = ℓ2Mr−1 − (ℓ− 1)r−1 + 2(−1)r−1,

where M0 := 1 and for any integer s ≥ 1,

Ms :=
∣∣{(α1, . . .αs) ∈ (F×ℓ )s : α1 + . . . + αs = 1 and α−11 + · · · + α−1s = 1

}∣∣ .

Note that M1 = 1 and that for s ≥ 2, the first of the two conditions defining Ms gives α1
linearly in terms of the other αi, while the second gives α2 as a root of a quadratic in the

remaining terms. Thus, if s ≥ 2, then Ms ≤ 2(ℓ − 1)s−2. It follows that when r = 2, the

sum
∑

α∈F×ℓ
K(α)r is bounded by an expression of leading degree at most 2 in ℓ (by direct

computation usingM1), and when r ≥ 3, by an expression of leading degree at most r−1

in ℓ.
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Using the above estimates, we now focus on the degree df (ℓ) of the leading term

in (13); we deduce that

df (ℓ) ≤ max
{
g2 + 2bg− 2b2 + b+ k + kg− 2bk − k2 + 1 : 0 ≤ b ≤

⌊g
2

⌋
,

1 ≤ k ≤
⌊
g− 2b+ 2

2

⌋}
.

The quadratic function above is maximized when b = ⌊ g2⌋ and k = ⌊ g−2b+2
2 ⌋ = 1, with

maximal value 3g2

2 + g
2 +1; the bound (12) follows. This proves (9), and therefore the first

part of (iii).

To prove the second part of (iii), observe that t ̸= 0 is divisible by at most finitely

many primes, and so
∏

ℓ!mA

Ht
(
ℓvℓ(t)+1

)
is a constant multiple of

∏

ℓ

Ht(ℓ), hence finite by the

first part of (iii).

Now we prove (iv). Fix an arbitrary t ∈ Z with t ̸= 0. For now, fix also a positive

integerm such that (m,mA) = 1 ormA|m, and a prime divisor ℓ ofm. Writem = m0ℓ
vℓ(m),

t = t0ℓvℓ(t), where m0, t0 ∈ Z satisfy ℓ ! m0, ℓ ! t0, and note that vℓ(m) ≥ 1. For any s ∈ Z
such that s ≡ t(modmℓvℓ(t)), we have vℓ(s) = vℓ(t) since vℓ(m) ≥ 1. Therefore we may

write s = s0ℓvℓ(t) with s0 ∈ Z and ℓ ! s0. By the Chinese Remainder Lemma, there exists

u ∈ Z such that u ≡ t−10 s0 (mod ℓ) and u ≡ 1(modm0), hence such that

u t ≡ s
(
mod ℓvℓ(t)+1

)
, (14)

u ≡ 1(modm). (15)

We have

uI2g ∈ G(m), (16)

since if (m,mA) = 1 then by (ii) we have G(m) = GSp2g(Z/mZ) and so uI2g ∈ G(m), while

if mA|m then u ≡ 1(modmA) (by (15)) and

{
M ∈ GSp2g

(
Ẑ
)
: M ≡ 1(modmA)

}
⊆ Im ρA

(by the definition of mA) and thus uI2g ∈ G(m).

Using (14) and (16), we deduce that the multiplication by uI2g map

C
(
m ℓvℓ(t)+1, t

)
−→ C

(
m ℓvℓ(t)+1, s

)

M 8→ uI2gM
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is a bijection; in particular,

∣∣C
(
m ℓvℓ(t)+1, s

)∣∣ =
∣∣C
(
m ℓvℓ(t)+1, t

)∣∣ . (17)

Now consider the natural projection

* : G
(
m ℓvℓ(t)+1

)
−→ G

(
mℓvℓ(t)

)

and observe that

∣∣*−1(I2g)
∣∣ ·
∣∣G
(
mℓvℓ(t)

)∣∣ =
∣∣G
(
mℓvℓ(t)+1

)∣∣ . (18)

Letting

S :=
{
s
(
modmℓvℓ(t)

)
: s ≡ t

(
modmℓvℓ(t)

)}
,

and using (17), we obtain

∣∣*−1(I2g)
∣∣ ·
∣∣C
(
mℓvℓ(t), t

)∣∣ =
∣∣*−1

(
C
(
mℓvℓ(t), t

))∣∣

=

∣∣∣∣∣∣∣

⋃

s
(
modmℓvℓ(t)

)
∈S

C
(
mℓvℓ(t)+1, s

)
∣∣∣∣∣∣∣

= |S| ·
∣∣C
(
mℓvℓ(t)+1, t

)∣∣

= ℓ ·
∣∣C
(
mℓvℓ(t)+1, t

)∣∣ ,

giving

∣∣*−1(I2g)
∣∣ ·
∣∣C
(
mℓvℓ(t), t

)∣∣ = ℓ ·
∣∣C
(
mℓvℓ(t)+1, t

)∣∣ . (19)

Putting together (18) and (19), we deduce that for all positive integers m such

that (m,mA) = 1 or mA|m, and for all primes ℓ | m, we have

Ft
(
mℓvℓ(t)+1

)
= Ft

(
mℓvℓ(t)

)

and thus

Ft
(
mℓk

)
= Ft

(
mℓvℓ(t)

)
for all k ≥ vℓ(t).
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Therefore for all d | mA we have

Ft

⎛

⎝d mA

∏

ℓ|mA

ℓvℓ(t)

⎞

⎠ = Ft

⎛

⎝mA

∏

ℓ|mA

ℓvℓ(t)

⎞

⎠ (20)

and for all k ≥ 1 and all primes ℓ ! mA we have

Ft
(
ℓvℓ(t)+k

)
= Ft

(
ℓvℓ(t)+1

)
. (21)

Now for any positive integer m consider its unique factorization

m = m1 ·m2, with m1|m∞A and (m2,mA) = 1.

By (ii),

Ft(m) = Ft(m1)
∏

ℓ|m2

Ht
(
ℓvℓ(m2)

)
.

Using (20) for the second line below and (21) for the third line, we have

lim
m →̃ ∞

Ft(m) = lim
m →̃ ∞

Ft(m1)
∏

ℓ|m2

Ht
(
ℓvℓ(m2)

)

= Ft

⎛

⎝mA

∏

ℓ|mA

ℓvℓ(t)

⎞

⎠ · lim
x→∞

∏

ℓ<x
ℓ!mA

lim
n→∞

Ht (ℓ
n)

= Ft

⎛

⎝mA

∏

ℓ|mA

ℓvℓ(t)

⎞

⎠ ·
∏

ℓ!mA

Ht
(
ℓvℓ(t)+1

)
,

which gives (iv). "

Remark 13. As in the case g = 1, when g = 2 it is possible to derive closed formulae

for the quotient |C(ℓ,t)|
|GSp4(Z/ℓZ)| ; indeed, we have

|GSp4(Z/ℓZ)| = ℓ4(ℓ− 1)(ℓ2 − 1)(ℓ4 − 1)

and

|C(ℓ, t)| =
{
ℓ5(ℓ− 1)(ℓ4 − ℓ− 1) if t = 0,

ℓ4(ℓ6 − ℓ5 − ℓ4 + ℓ+ 1) if t ̸= 0.
(22)



Frobenius Traces Defined by a Rational Abelian Variety 3575

We sketch a proof of the latter using arguments from [8]; we leave it as an exercise to

the reader to derive these formulae using the aforementioned results of [32]. We will use

these formulae in Remark 24.

Define

Nℓ,t :=
∣∣∣∣

{
(x,y, δ) ∈ ((Z/ℓZ)×)3 : y ̸= −δ,

(
x + y

x

)(
1 + δ

y

)
= t

}∣∣∣∣ .

It follows from the proof of [8, Theorem 12] that

∣∣{M ∈ GSp4(Z/ℓZ) : trM ≡ t(mod ℓ)
}∣∣

equals

ℓ4
(
(ℓ− 1)2(ℓ− 2) + Nℓ,t

)
+ ℓ4(ℓ− 1)(ℓ2 − 1)2 + ℓ5(ℓ− 1)2(ℓ3 − ℓ− 1)

+
{

(ℓ7 − ℓ4)(ℓ− 1) if t = 0,

0 if t ̸= 0.

We will now show that

Nℓ,t =
{

(ℓ− 1)(ℓ− 2) if t = 0,

(ℓ− 2)2 if t ̸= 0,

which in turn confirms (22).

Note that

∣∣{(x,y, δ) ∈ ((Z/ℓZ)×)3 : y ̸= −δ
}∣∣ = (ℓ− 1)2(ℓ− 2)

and

Nℓ,0 =
∣∣∣∣

{
(x,y, δ) ∈ ((Z/ℓZ)×)3 : y ̸= −δ,

(
x + y

x

)(
1 + δ

y

)
= 0

}∣∣∣∣ = (ℓ− 1)(ℓ− 2),

since, for any given x, the defining conditions of these sets determine y uniquely,

provided that δ ̸= −y. Putting the two together, we obtain that

∣∣∣∣

{
(x,y, δ) ∈ ((Z/ℓZ)×)3 : y ̸= −δ,

(
x + y

x

)(
1 + δ

y

)
̸= 0

}∣∣∣∣ = (ℓ− 1)(ℓ− 2)2.

Dividing by ℓ − 1, we deduce that Nℓ,t = (ℓ − 2)2 for any fixed nonzero t; this completes

the proof of (22). !
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3 Proof of Theorem 1

For a prime ℓ and an integer t, define:

Gℓ := GSp2g(Zℓ);

PGℓ := Gℓ/Z(Gℓ);

* : Gℓ −→ PGℓ the canonical projection;

Gℓ := Im ρA,ℓ;

G′ℓ := *(Gℓ);

Cℓ(t) := {M ∈ Gℓ : trM = t} ;

Cℓ(t) := {M ∈ Gℓ : trM = t} ;

C ′ℓ(0) := * (Cℓ(0)) ;

rCℓ(t) := inf
M∈Cℓ(t)

dim
Gℓ

ZGℓ(M)
;

rC′ℓ(0) := inf
M∈C′ℓ(0)

dim
G′ℓ

ZG′ℓ(M)
.

We will deduce Theorem 1 from the following more general result:

Theorem 14. Let A/Q be a principally polarized abelian variety of dimension g and let

t ∈ Z.

(i) Assume that there exists a prime ℓ such that:

(a) Gℓ is open in Gℓ;

(b) ∃ 0 ≤ d < dimGℓ such that dimM Cℓ(t) ≤ d.

Define

α := dimGℓ − d
dimGℓ

.

Then for any ε > 0 we have:

(i1) unconditionally,

πA(x, t)≪A,ℓ,ε
x

(log x)1+α−ε ; (23)

(i2) under GRH,

πA(x, t)≪A,ℓ,ε x1− α2 +ε. (24)
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(ii) If t ̸= ±2g, assume that there exists a prime ℓ such that:

(a) Gℓ is open in Gℓ;

(b) ∃ 0 ≤ d < dimGℓ such that dimM Cℓ(t) ≤ d;

(c) vℓ( t
2g ) ̸= 0.

Define

β := dimGℓ − d
dimGℓ −

rCℓ(t)
2

.

Then rCℓ(t) > 0 and the equations (23) and (24) hold with α replaced by β.

(iii) If t = 0, assume that there exists a prime ℓ such that:

(a) Gℓ is open in Gℓ;

(b) ∃ 0 ≤ d < dim PGℓ such that dimM C ′ℓ(0) ≤ d.

Define

γ := dimGℓ − 1− d
dimGℓ − 1−

rC′
ℓ
(0)

2

.

Then rC′ℓ(0) > 0 and the equations (23) and (24) hold with α replaced by

γ . !

Proof. Throughout the proof we let x > 0, to be thought of as approaching∞.

(i) Observe that, by (2), for any rational prime ℓ we have

πA(x, t) ≤ πCℓ(t)(x,L/Q),

where

L := QKer ρA,ℓ .

It remains to estimate πCℓ(t)(x,L/Q), which we do by following the method of [42, Section

8].

We choose ℓ as in the hypothesis of (i). Since Gℓ is open in Gℓ, we have dimGℓ =
dimGℓ. We apply Theorem 10 to the extension L/Q and the conjugacy set Cℓ(t) with

D := dimGℓ.

(ii) If t ̸= ±2g, we choose ℓ as in the hypothesis of (ii). As before, dimGℓ = dimGℓ.

Moreover,

Cℓ(t) ∩ Z(Gℓ) = ∅,
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for, otherwise, recalling that Z(Gℓ) = {µI2g : µ ∈ Z×ℓ }, we would have that the ℓ-adic

valuation of t
2g satisfies vℓ

(
t
2g

)
= 0, a contradiction.

In particular, for any M ∈ Cℓ(t),

ZGℓ(M) " Gℓ. (25)

Centralizers are closed subgroups, hence Lie subgroups, and ZGℓ(M) has a well-defined

dimension. Since GSp2g is connected as an algebraic group, (25) implies that

dim ZGℓ(M) < dimGℓ = dimGℓ.

If M ∈ Cℓ(t), then dim ZGℓ(M) ≤ dim ZGℓ(M) and, by the above,

dim
Gℓ

ZGℓ(M)
≥ dimGℓ − dim ZGℓ(M) ≥ 1.

Therefore we can improve upon the result of (i) by applying Theorem 11 to the extension

L/Q and the conjugacy set Cℓ(t) with D := dimGℓ.

(iii) If t = 0, we choose ℓ as in the hypothesis of (iii) and with ρ̂A,ℓ := * ◦ ρA,ℓ we consider

L′ := QKer ρ̂A,ℓ ,

a Galois extension of Q with Galois group G′ℓ. Observing that

πA(x, 0) ≤ πC′ℓ(0)(x,L
′/Q),

it remains to estimate the right-hand side.

Since Gℓ is open in Gℓ, we have that G′ℓ is open in PGℓ and so dimG′ℓ = dim PGℓ =
dimGℓ − 1. Moreover, since Z(PGℓ) = {I2g}, we have

*(Cℓ(0)) ∩ Z(PGℓ) = ∅.

In particular, as in the proof of part (ii), for any M ∈ Cℓ(0),

ZPGℓ(*(M)) " PGℓ,

thus

dim ZPGℓ(*(M)) < dimGℓ − 1.
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If M ∈ Cℓ(0), then dim ZG′ℓ(*(M)) ≤ dim ZPGℓ(*(M)) and, by the above,

dim
G′ℓ

ZG′ℓ(*(M))
≥ dim PGℓ − dim ZPGℓ(*(M)) ≥ 1.

Therefore we can improve upon the result of (i) by applying Theorem 11 to the extension

L′/Q and the conjugacy set C ′ℓ(0) with D := dimGℓ − 1. "

Proof of Theorem 1. In our setting, by the openness assumption on Im ρA, hypothesis

(a) of Theorem14 holds for any prime ℓ. It remains to verify hypothesis (b) and to compute

the values of α, β, and γ .

To verify hypothesis (b) of either parts (i) or (ii), observe that Cℓ(t) is a closed

subvariety of the algebraic groupGSp2g and soCℓ(t)has awell-defined dimension strictly

smaller than dimGℓ. The bound applies to the Minkowski dimension dimM Cℓ(t) also by

[42, Theorem 8]. Part (b) follows with d := dimGℓ − 1.

To verify hypothesis (b) of part (iii), observe that *(Cℓ(0)) is a closed subvariety

of the algebraic group PGℓ and so C ′ℓ(0) has a well-defined dimension strictly smaller

than dim PGℓ. The bound applies to the Minkowski dimension dimM C ′ℓ(0) also by [42,

Theorem 8]. Part (b) follows with d := dimGℓ − 2.

Recalling that dimGSp2g = 2g2 + g+ 1, we see that α = 1
2g2+g+1

.

If g = 1, then rCℓ(t) and rC′ℓ(0) are calculated as in [42, pp. 189–190], giving rise

to β = 1
3 and γ = 1

2 . If g ≥ 2, then rCℓ(t) and rC′ℓ(0) are estimated using Serre’s Theorem

A.1 in Appendix 1. Indeed, by this theorem and Remark 5 that follows its statement, for

M ∈ Cℓ(t) with t as in (ii) we have

rCℓ(t) = inf
M∈Cℓ(t)

dim
Gℓ

ZGℓ(M)
= inf

M∈Cℓ(t)
dim

Gℓ

ZGℓ(M)
≥ 4g− 4,

which gives

β ≥ 1
2g2 − g+ 3

.

To improve upon this bound when t = 0, we focus on estimating γ and use

dim ZPGℓ (*(M)) = dim ZGℓ(M)− 1. (26)
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If g = 2, we use (26) and once again the first part of Theorem A.1 in Appendix 1

to deduce

γ ≥ 1

(2g2 + g+ 1)− 1− 4g−4
2

= 1
8
.

If g ≥ 3, we use (26) and the last part of Theorem A.1 in Appendix 1 to deduce

γ ≥ 1

(2g2 + g+ 1)− 1− 4g−2
2

= 1
2g2 − g+ 1

.

This completes the proof of Theorem 1. "

Proof of Corollary 2. The proof of Corollary 2 is deduced easily frompart (i) of Theorem

1 and the Prime Number Theorem, as follows. Unconditionally,

π(x) = #{p ≤ x : p|NA} + #
{
p ≤ x : p ! NA, |a1,p| ≥ (logp)α−ε

}

+ #
{
p ≤ x : p ! NA, |a1,p| < (logp)α−ε

}

= #
{
p ≤ x : p ! NA, |a1,p| ≥ (logp)α−ε

}
+ OA(1) + O

⎛

⎜⎝
∑

t∈Z
|t|<(log x)α−ε

πA(x, t)

⎞

⎟⎠

= #
{
p ≤ x : p ! NA, |a1,p| ≥ (logp)α−ε

}
+ OA(1) + OA,ε

(
x

(log x)1+α− ε2
· (log x)α−ε

)

= #
{
p ≤ x : p ! NA, |a1,p| ≥ (logp)α−ε

}
+ o (π(x)) .

Under GRH,

π(x) = #{p ≤ x : p|NA} + #
{
p ≤ x : p ! NA, |a1,p| ≥ p

α
2−ε
}

+ #
{
p ≤ x : p ! NA, |a1,p| < p

α
2−ε
}

= #
{
p ≤ x : p ! NA, |a1,p| ≥ p

α
2−ε
}

+ OA(1) + O

⎛

⎜⎜⎝
∑

t∈Z
|t|<x

α
2−ε

πA(x, t)

⎞

⎟⎟⎠

= #
{
p ≤ x : p ! NA, |a1,p| ≥ p

α
2−ε
}

+ OA(1) + OA,ε

(
x1− α2 + ε

2 · x α
2−ε
)

= #
{
p ≤ x : p ! NA, |a1,p| ≥ p

α
2−ε
}

+ o (π(x)) .

The uniformity in t of the bounds for πA(x, t) provided by Theorem 1 was crucial in the

above estimates. "
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4 Proof of Theorem 3

Let A/Q be a principally polarized abelian variety of dimension g such that Im ρA is

open in GSp2g(Ẑ). We will investigate ν(a1,p) via the method of moments, with the goal

of proving:

Proposition 15. Assume GRH. Then

1
π(x)

∑

p≤x
p!NA
a1,p ̸=0

(
ν(a1,p)− log log x

)k = ck(log log x)
k
2 + o

(
(log log x)

k
2

)
(27)

for each integer k ≥ 1, where

ck :=

⎧
⎪⎨

⎪⎩

k!
2
k
2
(
k
2

)
!

if k even

0 if k odd

is the kth moment of the standard Gaussian. !

With this, by adapting to our context the proof of the Erdös–Kac Theoremdue to Billings-

ley [5] (see also [4] and the references therein for an accessible exposition), Theorem 3 is

proved.

The core ingredient in our proof is the following application of (6)–(7), Theorem

8 (under GRH) and Proposition 9: for any positive integerm and any x > 0 (to be thought

of as approaching infinity), we have

πC(m,0)(x,Q(A[m])/Q) = |C(m, 0)|
|G(m)| π(x) + O

(
|C(m, 0)|x 1

2 log(mNAx)
)
. (28)

Related to this, remark that by the openness assumption of Im ρA in GSp2g(Ẑ)

and by (8) from the proof of part (iii) of Lemma 12, we have

|C(ℓ, 0)|
|G(ℓ)| = 1

ℓ
+ O

(
1
ℓ2

)
(29)

for all ℓ ! mA. In particular, for any y > 0,

∑

ℓ≤y

|C(ℓ, 0)|
|G(ℓ)| = log log y + OA(1), (30)
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and, after using (29) and (7),

∑

ℓ≤y
|C(ℓ, 0)|≪ y2g2+g+1

log y
. (31)

Crucial to the method is also the following simple observation. Let x > 0 and

0 < δ < 1 be fixed and let y := xδ. For any integer m ≥ 1, we have

|ν(m)− νy(m)| ≤ logm
δ log x

, (32)

where νy(m) denotes the number of distinct prime divisors ℓ ≤ y of m.

We now proceed with the proof of (27). For each prime ℓ, we define a random

variable Rℓ to be 1 with probability 1
ℓ
and 0 with probability 1− 1

ℓ
. Upon taking y := xδ

for some fixed 0 < δ < 1 and x →∞, R(y) :=
∑

ℓ≤y
Rℓ becomes normally distributed with

mean and variance each equal to log log x; by the Central Limit Theorem, for any integer

k ≥ 1 we have

E
(
(R(y)− log log x)k

)
= ck(log log x)

k
2 + o

(
(log log x)

k
2

)
. (33)

By (29), Rℓ models the event that ℓ|a1,p for some p. Our strategy then is to prove (27) by

comparing E
(
(R(y)− log log x)k

)
and 1

π(x)

∑

p≤x
p!NA
a1,p ̸=0

(νy(a1,p)− log log x)k for each k ≥ 1.

We fix x > 0 and k ≥ 1, choose a parameter δ = δ(g,k) such that

0 < δ <
1

2k (2g2 + g+ 1)
(34)

and define y := xδ. In what follows, our O-estimates will reflect the growth of various

functions as x →∞.

For each ℓ and each p ! NA, we define

δℓ(p) :=
{

1 if ℓ|a1,p,

0 else.

Then, for each integer 1 ≤ j ≤ k, upon applying (28)–(31) and (33), we obtain
∑

p≤x
p!NA
a1,p ̸=0

νy(a1,p)
j

=
∑

p≤x
p!NA
a1,p ̸=0

∑

ℓ1,...,ℓj≤y
δℓ1(p) . . . δℓj (p)
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=
∑

ℓ1,...,ℓj≤y
#
{
p ≤ x : p ! NA,a1,p ̸= 0, lcm{ℓ1, . . . , ℓj}|a1,p

}

=
∑

ℓ1,...,ℓj≤y
#
{
p ≤ x : p ! NA, lcm{ℓ1, . . . , ℓj}|a1,p

}
+ O(π(y)j πA(x, 0))

=
∑

ℓ1,...,ℓj≤y
#
{
p ≤ x : p ! lcm{ℓ1, . . . , ℓj}NA, lcm{ℓ1, . . . , ℓj}|a1,p

}

+
∑

ℓ1,...,ℓj≤y
#
{
p ≤ x : p ! NA,p| lcm{ℓ1, . . . , ℓj}|a1,p

}
+ O(π(y)j πA(x, 0))

=
∑

ℓ1,...,ℓj≤y
πC(lcm{ℓ1,...,ℓj },0)(x,Q(A[lcm{ℓ1, . . . , ℓj}])/Q) + O

(
jπ(y)j

)
+ O

(
πA(x, 0) π(y)j

)

= E(R(y)j) π(x) + Oj

(
π(x) (log log y)j−1

)
+ OA,j

(
yj(2g

2+g+1)

(log y)j
x

1
2 log x

)

+ Oj

(
π(y)jπA(x, 0)

)
.

By the binomial theorem and the above, we deduce

∑

p≤x
p!NA
a1,p ̸=0

(νy(a1,p)− log log x)k

=
∑

0≤j≤k

(
k
j

)
(− log log x)k−j

∑

p≤x
p!NA
a1,p ̸=0

νy(a1,p)
j

=
∑

0≤j≤k

(
k
j

)
(− log log x)k−j E(R(y)j) π(x)

+ OA,k

(
yk(2g2+g+1)x

1
2 (log x) (log log x)k

)
+ Ok

(
π(y)k πA(x, 0) (log log x)k

)
.

Recalling the choice of δ given in (34) and using part (i2) of Theorem 1, we see that the

two O-terms above become Oε,A,k
(
x1−ε(log x)(log log x)k

)
, which is o

(
π(x)(log log x)

k
2

)
.

Then, upon applying the binomial theorem once again in order to rewrite the first term,

we deduce

1
π(x)

∑

p≤x
p!NA
a1,p ̸=0

(νy(a1,p)− log log x)k ∼ E((R(y)− log log x)k). (35)
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Finally, recalling (5) and (32) and applying (33) and (35) several times, we deduce

1
π(x)

∑

p≤x
p!NA
a1,p ̸=0

(
ν(a1,p)− log log x

)k

= 1
π(x)

∑

p≤x
p!NA
a1,p ̸=0

(
νy(a1,p)− log log x + O

(
log |a1,p|
δ log x

))k

= 1
π(x)

∑

p≤x
p!NA
a1,p ̸=0

(
νy(a1,p)− log log x

)k + Ok,g,δ

⎛

⎜⎜⎜⎜⎝

∑

0≤j≤k−1

1
π(x)

∑

p≤x
p!NA
a1,p ̸=0

∣∣νy(a1,p)− log log x
∣∣j

⎞

⎟⎟⎟⎟⎠

= 1
π(x)

∑

p≤x
p!NA
a1,p ̸=0

(
νy(a1,p)− log log x

)k + Ok

(
(log log x)

k−1
2

)

= ck(log log x)
k
2 + o

(
(log log x)

k
2

)
.

This completes the proof of Theorem 3.

Remark 16. The first and secondmoments of ν(a1,p)may be estimated directly, without

any comparison with the model defined by Rℓ. The strategy originates in Turán’s proof

of the Hardy–Ramanujan Theorem, [47], and is summarized below. !

We choose 0 < δ < 1
8g2+4g+1

and let y = xδ. Then, proceeding as in the proof of

Theorem 3 but without the model Rℓ, we obtain

∑

p≤x
p!NA
a1,p ̸=0

(
ν(a1,p)− log log x

)2

=
∑

p≤x
p!NA
a1,p ̸=0

ν(a1,p)
2 − 2(log log x)

∑

p≤x
p!NA
a1,p ̸=0

ν(a1,p) + (log log x)2#{p ≤ x : p ! NA,a1,p ̸= 0}

=
∑

p≤x
p!NA
a1,p ̸=0

(
νy(a1,p) + OA(1)

)2

− 2(log log x)
∑

p≤x
p!NA
a1,p ̸=0

(
νy(a1,p) + OA(1)

)
+ π(x)(log log x)2 + O(πA(x, 0) (log log x)2)
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=
∑

p≤x
p!NA
a1,p ̸=0

νy(a1,p)
2 − 2(log log x)

∑

p≤x
p!NA
a1,p ̸=0

νy(a1,p) + π(x)(log log x)2

+ O

⎛

⎜⎜⎜⎜⎝

∑

p≤x
p!NA
a1,p ̸=0

νy(a1,p)

⎞

⎟⎟⎟⎟⎠
+ O(π(x) log log x) + O(πA(x, 0) (log log x)2)

=
∑

ℓ1,ℓ2≤y
ℓ1 ̸=ℓ2

|C(ℓ1ℓ2, 0)|
|G(ℓ1ℓ2)|

π(x) + OA

⎛

⎝
∑

ℓ1,ℓ2≤y
|C(ℓ1ℓ2, 0)|x 1

2 log x

⎞

⎠− 2(log log x)
∑

ℓ≤y

|C(ℓ, 0)|
|G(ℓ)| π(x)

+ OA

(
∑

ℓ≤y
|C(ℓ, 0)|x 1

2 (log x)(log log x)

)

+ π(x)(log log x)2 + OA

(
∑

ℓ≤y

|C(ℓ, 0)|
|G(ℓ)| π(x)

)

+ OA

(
∑

ℓ≤y
|C(ℓ, 0)|x 1

2 log x

)

+ O(π(x) log log x) + O(πA(x, 0) (log log x)2)

= π(x)(log log x)2 + OA

(
x2δ(2g2+g+1)

log x
x

1
2

)

− 2π(x)(log log x)2

+ O
(
xδ(2g

2+g+1) x
1
2 log log x

)

+ π(x)(log log x)2 + OA (π(x) log log x)

+ OA

(
xδ(2g

2+g+1) x
1
2 log x

)
+ OA

(
πA(x, 0)(log log x)2

)

= OA (π(x) log log x) . (36)

The cancellation of the π(x)(log log x)2 terms is essential and that the choice of

δ ensures that the largest emerging O-term depending on y, namely OA

(
x2δ(2g

2+g+1)

log x x
1
2

)
,

is sufficiently small; precisely, it is≪A π(x)≪A π(x) log log x.

Remark 17. That ν(a1,p) has normal order log logp can be deduced easily from the

second moment estimate (36). In particular, this is an immediate consequence of the

following variation of (36):

∑

p≤x
p!NA
a1,p ̸=0

(
ν(a1,p)− log logp

)2 ≪A π(x) log log x.
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In turn, this is obtained by remarking that

∑

p≤x
p!NA
a1,p ̸=0

(
ν(a1,p)− log logp

)2 ≪
∑

p≤x
p!NA
a1,p ̸=0

(
ν(a1,p)− log log x

)2 +
∑

p≤x
p!NA
a1,p ̸=0

(
log

log x
logp

)2

,

using (36) for the first sum and splitting the last sum over p into a sum over p ≤ √x and

one over
√
x < p ≤ x, followed by elementary estimates. !

Remark 18. The normal order of ν(a1,p) may also be obtained via the ubiquitous large

sieve; see [33, Proposition 2.15] for generalities related to such works. Moreover, the

kth moments (27) may be estimated more precisely via sieve methods by applying the

general result [23, Proposition 3]. !

5 Heuristic Reasoning for Conjecture 4

We devote this section to arguing heuristically towards Conjecture 4. Our main setting

will be that of a principally polarized abelian varietyA/Q of dimension g for which Im ρA

is open in GSp2g(Ẑ) and which satisfies the Equidistribution Assumption. In particular,

the function + introduced in Section 1 is bounded, continuous, and nonzero on (−1, 1);

this was proved in more than one way in email communication between Katz [29] and

Serre; in Appendix 2 we include a letter from Serre to Katz that contains such a proof.

Definition 19. For each integer m ≥ 1 and prime p, define cp,m ∈ (0,∞) by

cp,m = |G(m)|

m
∑

τ∈Z
|τ |<2g

√
p

+

(
τ

2g
√
p

)
|C(m, τ )|

and define the function

f (m)
p : Z −→ [0,∞),

f (m)
p (τ ) :=

⎧
⎨

⎩
+
(

τ
2g
√
p

)
· m|C(m,τ )|

|G(m)| · cp,m if |τ | < 2g
√
p,

0 else.
!

Note that

∑

τ∈Z
f (m)
p (τ ) = 1.
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Lemma 20. For all integers m ≥ 1 and τ0 ∈ Z we have

lim
p→∞

m
2g
√
p

∑

τ∈Z
|τ |<2g

√
p

τ≡τ0(modm)

+

(
τ

2g
√
p

)
= 1. !

Proof. This follows by viewing the expression inside the limit as a Riemann sum

approximation of the integral
∫ 1

−1
+(τ ) dτ = 1. For more details, see [35, pp. 31–32]. "

Lemma 21. For all integers m ≥ 1 we have

lim
p→∞

2g
√
p cp,m = 1. !

Proof. By the definition of cp,m and Lemma 20,

lim
p→∞

1
2g
√
p cp,m

= lim
p→∞

1
2g
√
p

m−1∑

τ0=0

∑

τ∈Z
|τ |<2g

√
p

τ≡τ0(modm)

+

(
τ

2g
√
p

)
m |C(m, τ )|

|G(m)|

= lim
p→∞

m−1∑

τ0=0

|C(m, τ0)|
|G(m)|

⎛

⎜⎜⎜⎝
m

2g
√
p

∑

τ∈Z
|τ |<2g

√
p

τ≡τ0(modm)

+

(
τ

2g
√
p

)
⎞

⎟⎟⎟⎠

=
m−1∑

τ0=0

|C(m, τ0)|
|G(m)|

= 1. "

Now let us fix t ∈ Z and assume that lim
m →̃ ∞

f (m)
p (t) models the likelihood of the

event a1,p = t, as guided by the Chebotarev law for all m-division fields and by the

behaviour of
a1,p
2g
√
p in the interval (−1, 1). Then, recalling part (iv) of Lemmas 12 and 21,

we reason heuristically as follows:

#{p ≤ x : p ! NA,a1,p = t}
≈ lim

m →̃ ∞

∑

p≤x
f (m)
p (t)

= lim
m →̃ ∞

∑

p≤x
+

(
t

2g
√
p

)
· m|C(m, t)|

|G(m)| · cp,m

≈
(

lim
m →̃ ∞

m|C(m, t)|
|G(m)|

)∑

p≤x
+

(
t

2g
√
p

)
· 1
2g
√
p

=
(
lim

m →̃ ∞
Ft(m)

) ∑

p≤x
+

(
t

2g
√
p

)
· 1
2g
√
p
.
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Here, the symbol ≈means equality deduced purely heuristically. The last line is simply

notation, as introduced in Section 2.2.

To understand the growth of the last sum, we use the properties of the function

+. For any ε > 0, by the continuity of + at 0, there exists a δ > 0 such that

∣∣∣∣
t

2g
√
p

∣∣∣∣ < δ ⇒
∣∣∣∣+
(

t
2g
√
p

)
−+(0)

∣∣∣∣ < ε. (37)

We thus split the sum over p ≤ x according to the above δ-interval. By the boundedness

of +, we obtain

∣∣∣∣∣∣∣∣

∑

p< t2

4g2δ2

(
+

(
t

2g
√
p

)
−+(0)

)
1

2
√
p

∣∣∣∣∣∣∣∣
≪t,ε,g 1.

By (37) and by noting that
∑

p≤x

1
2
√
p
∼
√
x

log x
, we obtain

∣∣∣∣∣∣∣∣

∑

t2

4g2δ2
<p≤x

(
+

(
t

2g
√
p

)
−+(0)

)
1

2
√
p

∣∣∣∣∣∣∣∣
≪ ε
√
x

log x
.

Taking ε→ 0 and returning to our heuristics, we are led to the possible prediction that

#{p ≤ x : p ! NA,a1,p = t} ∼ +(0)

g
· lim
m →̃ ∞

Ft(m) ·
√
x

log x
. (38)

When t ̸= 0, we proved in parts (iii) and (iv) of Lemma 12 that the limit over

m →̃ ∞ exists and equals an infinite product; in this case, we conjecture that

#{p ≤ x : p ! NA,a1,p = t} ∼
+(0)

g
· mA,t|C(mA,t, t)|

|G(mA,t)|
·
∏

ℓ!mA

ℓvℓ(t)+1 |{M ∈ GSp2g(Z/ℓvℓ(t)+1Z) : trM ≡ t(mod ℓvℓ(t)+1)}|
|GSp2g(Z/ℓvℓ(t)+1Z)| ·

√
x

log x
,

(39)

where we recall

mA,t = mA

∏

ℓ|mA

ℓvℓ(t).
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When t = 0 and g = 1, the limit overm →̃ ∞ exists and equals an infinite product by [35,

Lemma 2, p. 34]; see Remark 22 below. When t = 0 and g ≥ 2, we are currently unable

to make a similar statement and relegate such a study to future work.

We conclude this section with several remarks about the above conjecture.

Remark 22. Assume g = 1 andEndQ(E) ≃ Z. Then Im ρA is open inGSp2g(Ẑ) (see [41]) and

the Equidistribution Assumption holds (see [3, 11, 12]). In this case,+(x) = 2
π

√
1− x2 and

(38) coincides with the formulation in (1) of the Lang–Trotter Conjecture on Frobenius

traces of [35]. Combining this with the formula

|GL2(Z/ℓZ)| = ℓ(ℓ− 1)
(
ℓ2 − 1

)

and with [35, Lemma 2, p. 34], we obtain an equivalent reformulation of (38):

πA(x, t) ∼ 2
π

· mA|C(mA, t)|
|G(mA)| ·

∏

ℓ!mA
ℓ|t

ℓ2

ℓ2 − 1
·
∏

ℓ!tmA

ℓ
(
ℓ2 − ℓ− 1

)

(ℓ+ 1)(ℓ− 1)2
·
√
x

log x
. (40)

!

Remark 23. Assume g = 2 and EndQ(A) ≃ Z. Then Im ρA is open in GSp2g(Ẑ) ([43], [44])

and the Sato–Tate group of A is USp(4) [21, Theorem 4.3], while the Equidistribution

Assumption is an open question. The function +(·) may be calculated explicitly using

the Weyl integration formula as in [31]. In particular, this calculation leads to the value

+(0) = 256
15π2

.

We explain the calculation of +(0) here briefly. Let Lp(A,T) := T4PA,p
(
1
T

)
be the p-Euler

factor in the L-function of A and let L̄p(A,T) = Lp
(
A, T√

p

)
be its normalization. Let

S :=
{
(x1,x2) ∈ R2 : x2 ≥ 2x1 − 2,x2 ≥ −2x1 − 2,x2 ≤

x2
1

4
+ 2

}

and letR(x1) be the defining interval of x2 imposed by the constraints of S. Recalling that

the Sato–Tate group associated to A is USp(4), the conjectured joint density function of

the normalized coefficients ā1,p and ā2,p is

1
4π2

√
max{ρ(ā1,p, ā2,p), 0},
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where

ρ(x1,x2) :=
(
x2
1 − 4x2 + 8

)
(x2 − 2x1 + 2) (x2 + 2x1 + 2) ,

with support in the region S where ρ is non-negative. Consequently, for any interval

I ⊆ [−4, 4], the set

{
p : ā1,p ∈ I

}

is expected to have natural density

∫

I

∫

R(x1)

1
4π2

√
max{ρ(x1,x2), 0} dx2 dx1.

(For details, see the original source, specifically [21, p. 21 and p. 40].) Let

/(x) = 1
4π2

∫

R(x)

√
max{ρ(x,x2), 0}dx2.

In particular, R(0) = [−2, 2] and

/(0) = 1
4π2

∫ 2

−2

√
(8− 4x2)(x2 + 2)2 dx2 = 64

15π2
.

In our notation +(x) = /(4x) · 4, since one can rescale the variable and account for the

fact that both functions are assumed to have integral 1. Therefore, +(0) = /(0) · 4 =
256
15π2

. !

Remark 24. For g = 2, t = ±1, and EndQ(A) ≃ Z, we have an equivalent reformulation

of (39):

πA(x, t) ∼ 128
15π2

· mA|C(mA, t)|
|G(mA)| ·

∏

ℓ!mA

ℓ(ℓ6 − ℓ5 − ℓ4 + ℓ+ 1)

(ℓ− 1)(ℓ2 − 1)(ℓ4 − 1)
·
√
x

log x
.

This is obtained by combining (22) with the value of +(0) from the previous remark and

with the formula

|GSp4(Z/ℓZ)| = ℓ4(ℓ− 1)(ℓ2 − 1)(ℓ4 − 1). !



Frobenius Traces Defined by a Rational Abelian Variety 3591

Remark 25. For higher g, the function + is shown to have a certain general form in

Appendix 2. It may again be calculated explicitly using, for example, [49, Theorem 7.8.B]

and [30, 5.0.4] (see also the upcoming [7]). !

Remark 26. For g = 1, a more refined version of (1) was proposed in [2]; for higher g,

similar refinements are relegated to future work. !

Remark 27. Variations of our Conjecture 4 may be formulated for non-generic classes

of abelian varieties such as the case of a CM elliptic curve E/Q (which was already

considered in [35]); in such cases, both the assumption on the image of ρA and theEquidis-

tribution Assumption must be modified appropriately. We relegate such endeavours to

future work. !

6 Computations

The Lang–Trotter Conjecture as formulated in (40) has been supported by numerical

evidence (see [8, 13, 35]). Among the main ensuing difficulties are the computations of

the integermA and of the quotient mA|C(mA,t)|
|G(mA)| . These may be resolved for g = 1 by working

with a Serre curve, that is, an elliptic curve for which
∣∣∣GL2

(
Ẑ
)
: Im ρA

∣∣∣ = 2. For such a

curve, the integermA is the least commonmultiple of 2 and the discriminant of Q
(√
0A
)
,

where0A is the discriminant of anyWeierstrass equation ofA; see [27, Section 4, p. 1558].

As proved in [27] and later in [14], in more than one sense almost all elliptic curves are

Serre curves. Examples of such curves, as exhibited by Serre in [41, pp. 310–311] and by

Daniels in [16, p. 227], have been used for numerical computations in [13, 35].

For higher g, the investigation of mA from a computational perspective is a

solid problem in itself that remains to be tackled. In this section, while we do not pro-

vide numerical evidence for Conjecture 4, we do provide some computational data that

complements our main theoretical results.

6.1 Values of πA(x, t)

Figures 1 and 2 show the values of πA(x, t) graphed versus
√
x/ log x for t ∈ {0, 1} and

A ∈ {J1, J2, J3}, where J1, J2, J3 are the Jacobians of the hyperelliptic curves listed in

Table 1. Prediction (38) would imply that these graphs approximate a straight line,

whose slope is determined by the constant in front of
√
x/ log x; the graphs are indeed

consistent with this implication.
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Fig. 1. Values of πA(x, 0) versus
√
x/ log x for various Jacobians of hyperelliptic curves.

Fig. 2. Values of πA(x, 1) versus
√
x/ log x for various Jacobians of hyperelliptic curves.

6.2 Converging products of Lemma 12

In part (iii) of Lemma 12, we showed that the following infinite product converges for

all integers t and all integers g ≥ 1:

Pg,t :=
∏

ℓ

ℓ · |{M ∈ GSp2g(Z/ℓZ) : trM ≡ t(mod ℓ)}|
|GSp2g(Z/ℓZ)| .
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Table 1. Jacobians of hyperelliptic curves used in computations

Jacobian Hyperelliptic curve Genus Comments

J1 y2 = x5 − x + 1 2 Good reduction outside {2, 19, 151},
End(J1) ∼= Z [18, p. 509]

J2 y2 = 4x7 − 12x − 35 3 Everywhere semistable, End(J2) ∼= Z [51, p. 2]

J3 y2 = 4x9 − 8x − 39 4 Everywhere semistable, End(J3) ∼= Z [51, p. 2]

Fig. 3. Average number of ν(a1,p) for J1, J2, and J3, in the intervals [2i−1, 2i], i = 2, . . . , 21. For

comparison, the graphs of log(log(2i)) and log(log(2i−1)) are shown in dotted lines.

The numerical value of this product depends on the genus g and the primes dividing

the trace t (more precisely, the numerator of each factor depends only on whether or not

ℓ | t). It is possible to compute its value for various g and t. For example, when g = 2

we can use the explicit formulae of Remark 13. In that case, for t ∈ {0, 1}, numerical

computations show that the products appear to quickly converge to

P2,0 ≈ 1.3547 . . . , P2,1 ≈ 0.7988 . . . .

6.3 The normal order of ν(a1,p)

Figure 3 shows the average number of ν(a1,p) for J1 of Table 1, for p in the intervals

[2i−1, 2i], i = 2, . . . , 21. The graphs of log log 2i and log log 2i−1 are shown for comparison.
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Fig. 4. Histograms of ν(a1,p) for J1; on the left, the data are for primes p < 220, and on the right,

the data are for primes 220 < p < 221. Primes of bad reduction and primes for which the trace is

zero are excluded.

Figure 4 presents histograms of the values of ν(a1,p) for J1 in two intervals: [1, 220] and
[220, 221]. The corresponding histograms for J2 and J3 are very similar.
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Appendix 1. Letter by J-P. Serre on Dimension of Conjugacy Classes in Symplectic

Groups

Paris, May 8, 2015

Dear professor Cojocaru,

In case you want optimal estimates for the dimensions of conjugacy classes in

Sp and GSp, here is what one can say:

Let us consider the algebraic groups G = GSp2n or Sp2n over a field k of charac-

teristic 0 (there are some small changes in char. p > 0). Assume n > 1, since the case of

GL2 and SL2 is obvious. If g ∈ G(k), let d(g) be the dimension of the conjugacy class of g,

viewed as an algebraic subvariety of G; we have d(g) = dimG − dim ZG(g), where ZG(g)

is the centralizer of g in G.

Theorem A.1. Assume that g is not of the form cu, where c is in the centre of G and u is

unipotent. Thend(g) # 4n−4. Ifmoreover Tr(g) = 0 andn > 2,we haved(g) # 4n−2. !

A few remarks before giving the proof:

(1) This is a “geometric” statement: we may assume that the ground field is

algebraically closed.

(2) We may assume that G = Sp2n; the case of GSp2n follows by writing g as

product of a scalar and an element of Sp2n; the dimension of the conjugacy

class is the same.

(3) If Tr(g) = 0, then the condition “g ̸= cu” is satisfied, thanks to the fact that

the characteristic does not divide 2n.

(4) The bounds are optimal. One realizes them by using the obvious embedding

ι : SL2 → G, fixing a non-degenerate subspace of codimension 2. If one

chooses g = ι(−1), the centralizer of g in Sp2n is Sp2n−2×SL2; its dimension

is 2(n−1)2 +n−1+3 = 2n2−3n+4; hence the dimension of the conjugacy

class of g is dimG − (2n2 − 3n + 4) = 2n2 + n − (2n2 − 3n + 4) = 4n − 4.

If one chooses g = ι(x), where x ∈ SL2 is such that Tr(x) = 2 − 2n (this

is always possible and gives a non-central element because 2 − 2n ̸= ±2),

one gets an element of trace 0 with centralizer the product of Sp2n−2 by a

group of dimension 1; its dimension is 2n2 − 3n + 2, and the dimension of

its conjugacy class is 4n− 2.
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(5) In the ℓ-adic application, one needs the fact that, if g ∈ GSp2n(Zℓ), the dimen-

sion (as an ℓ-adic manifold) of the conjugacy class of g is the same as its

dimension in the sense of algebraic geometry.

For a given t ∈ Z, with t ̸= ±2n, one needs to choose ℓ so that no element of trace t of

GSp2n(Zℓ) can be of the forbidden shape cu ; as you explain in your paper, this is done

by taking ℓ such that vℓ(t/2n) ̸= 0, which is always possible.

Proof of d(g) # 4n− 4.

Wemay assume that g is semisimple. Indeed, if we decompose g in Jordan form,

as g = su = us, where s is semisimple andu is unipotent, the centralizer of g is contained

in the centralizer of s, hence d(g) # d(s).

Let us decompose the vector space V = k2n (with its chosen non-degenerate

alternating form) as a direct sum of eigenspaces of g, say V = ⊕Vλ. These spaces have

the following properties:

(a) V1 and V−1 are non-degenerate, hence of even dimension;

(b) If λ ̸= 1,−1, then Vλ is totally isotropic and in duality with Vλ−1 .

Put nλ = dimVλ. The centralizer of g is :

ZG(g) = Spn1
× Spn−1 × *

′ GLnλ ,

where the symbol *′ means a product on a set 2 such that k× is the disjoint union of

{1,−1},2, and 2−1.
(It might be more efficient to use the orthogonal decomposition of V given by the

eigenspaces of g+ g−1.)

This implies :

dim ZG(g) = 1
2

(n2
1 + n1 + n2

−1 + n−1) +3′n2
λ, (A.1)

where 3′ means a summation over λ ∈ 2.
We also have:

2n = n1 + n−1 + 23′nλ. (A.2)

We now need to give an upper bound for the sum (A.1). Let us simplify the notation by

putting x = n1/2,y = n−1/2, z = 3′nλ. Equation (A.2) becomes:

n = x + y + z, (A.2’)
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and equation (A.1) implies (using (3′nλ)2 # 3′n2
λ):

dim ZG(g) $ 2x2 + x + 2y2 + y + z2. (A.3)

Consider first the case z = 0 (i.e., the case where g as order 2). In that case, (A.1) shows

that dim ZG(g) = 2x2 + x + 2y2 + y = 2n2 + n − 4xy. We have xy ̸= 0, otherwise g

would be central; hence x and y run between 1 and n− 1. In that range the product xy

is minimum when either x or y is equal to 1, in which case its value is n − 1. Hence

dim ZG(g) $ 2n2 + n− 4(n− 1), i.e., d(g) # 4(n− 1), as wanted.

Suppose z # 1; we have x,y # 0. With the relation (A.2’), this shows that the

point (x,y, z) ∈ R3 belongs to the triangle with vertices the three points (0, 0,n), (0,n−
1, 1), (n−1, 0, 1). Since the function 2x2+x+2y2+y+z2 is convex, it attains its maximum

at one of the vertices [6, Chapter II, Section 7.1, Proposition 1]; its values there are

n2, 2n2 − 3n + 2, 2n2 − 3n + 2. Since n2 $ 2n2 − 3n + 2 for n # 2, this shows that

dim ZG(g) $ 2n2 − 3n+ 2, hence d(g) # 4n− 2, and a fortiori d(g) # 4n− 4, as wanted.

(The proof also shows that d(g) = 4n−4 is only possible when g is an involution

of type ± ι(−1), as in Remark 4.)

Proof of d(g) # 4n− 2 when Tr(g) = 0.

We use the same notation as in the above proof. The case z = 0 is possible only if

n is even, with x = y = n/2. This gives a centralizer of dimension n2+n, hence d(g) = n2,

which is > 4n− 2 when n # 4. Hence z # 1, in which case the computation given above

shows that d(g) # 4n− 2.

Best wishes

J-P. Serre

Appendix 2. Letter by J-P. Serre on the Continuity of the Density Function

Paris, April 12, 2015

Dear Katz,

Thank you very much for your letter about the density problem for USp(2n).
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After writing to you I found a different way of getting the same result, based

on an integration formula which is a combination of Weyl’s formula and a formula of

Steinberg [46, Lemma 8.2].

Let me start with a simple simply connected group G. Let T be a maximal torus

and define the roots, weights, fundamental weights as usual. I need to number the fun-

damental weights: ω1, . . . ,ωn, where n is the rank. Call χi the traces of the corresponding

fundamental representations and call ψi their restrictions to T (I am copying Steinberg’s

notations). Steinberg’s formula is a formula relating the n-differential forms on T given

on one hand by the exterior product of the dψi and on the other hand by the exterior

product of the dωi/ωi (invariant differential on the torus). The formula is as follow:

dψ1 ∧ ... ∧ dψn = f .dω1/ω1 ∧ · · · ∧ dωn/ωn, (A.4)

where f = ω0
∏

α>0(1− α−1) and ω0 = ∏
ωi.

(Note that, here, I am forced to use a multiplicative notation for the roots, since

I view them as functions on T .)

We may write f 2 in a slightly simpler form:

f 2 =
∏

α>0

(α + α−1 − 2). (A.5)

This shows that f 2 is real and invariant by theWeyl group. It can thus be written

as a polynomial in the χi ; let me call D that polynomial (it is a kind of discriminant: it

vanishes only on the singular elements of G). We thus have:

f 2 = D(χ1, . . . ,χn). (A.6)

This formula of Steinberg gives an integration formula over any local field. Here

I shall stick to R but I have no doubt that the p-adic case should be useful, too. To

simplify matters, I shall suppose that -1 is in the Weyl group W .

Let now call UG the compact form of G, and UT the corresponding torus. The

roots α, and the characters ωi are now viewed as functions on UT with complex values

of absolute value 1. The χi are real-valued functions (because of my assumption on the

Weyl group); let me call them xi; they give a map x : UG→ Rn which is well known (since

Elie Cartan [9, pp. 803–804]) to have the following properties:

(a) It gives a homeomorphism of the space Cl(UG) on to a compact subset C of Rn.

(When G has type G2, the set C is the one I asked you to draw for me.)
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(b) Let CT be the standard fundamental domain ofW (in the tangent space, it cor-

responds to the fundamental alcove); themapCT → C is a homeomorphism; the boundary

of C corresponds to the singular classes. (I see that by using topological arguments.)

(c) The function D(x1, . . . ,xn) (where D is as above) is a polynomial whose

restriction to C is zero on the boundary and nowhere else.

By combining this with H. Weyl’s integration formula, one finds:

Theorem A.2. The image by x : UG → Rn of the normalized Haar measure of G has

a continuous density (with respect to the standard measure dx1 · · ·dxn), namely the

function ϕ(x1, . . . ,xn)which is equal to 0 outside C and to (2π)−n|D(x1, . . . ,xn)|1/2 on C. !

Corollary A.3. The equidistribution measure associated with a fundamental character

of G has a continuous density. !

More precisely, the density at a number c of the fundamental character χ1 is

equal to
∫
ϕ(c,x2, . . . ,xn)dx2 · · ·dxn.

Curiously, this point of view does not seem to give the fact that such densities

are real analytic outside a finite number of values (namely, those taken by the character

at the points of finite order ofG corresponding to the vertices of the alcove, i.e. the points

of G of order 1 or 2 when G = Sp2n).

One can also say when the density is not 0; for instance, for the trace when

G = Sp2n the density is nonzero when the trace c is such that −2n < c < 2n.

When -1 is not in the Weyl group, some fundamental characters come in pairs of

conjugate ones and instead ofRn one should take a product of copies ofR and C. The case

of SL3 is especially nice; the compact C lies inside C and is the interior (+ boundary) of

a “hypocycloid with 3 cusps” (hypocycloïde à trois rebroussements—as I learned when

preparing the ENS competition in 1944–45).

Best wishes

J-P. Serre

PS—The explicit formula for ϕ in the case of Sp4 is given in the aritcle of Fité et al. [21];

see Table 5, last line. Their a1 is my x1 and their a2 is my x2 + 1.
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