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AVERAGE TWIN PRIME CONJECTURE FOR ELLIPTIC CURVES

By ANTAL BALOG, ALINA-CARMEN COJOCARU, and CHANTAL DAVID

Abstract. Let E be an elliptic curve over Q. In 1988, N. Koblitz conjectured a precise asymptotic for
the number of primes p up to x such that the order of the group of points of E over Fp is prime. This
is an analogue of the Hardy–Littlewood twin prime conjecture in the case of elliptic curves.

Koblitz’s conjecture is still widely open. In this paper we prove that Koblitz’s conjecture is true
on average over a two-parameter family of elliptic curves. One of the key ingredients in the proof is
a short average distribution result of primes in the style of Barban-Davenport-Halberstam, where the
average is taken over prime differences and over arithmetic progressions.
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1. Introduction. A well-known open problem in number theory is the twin
prime conjecture, which states that there exist infinitely many primes p such that
p+ 2 is also a prime. This conjecture was generalized by A. de Polignac in 1849
to the statement that, for any even integer r �= 0, there exist infinitely many primes
p such that p+ r is also a prime. In 1922, G. H. Hardy and J. Littlewood [HaLi]
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made this statement precise, predicting that, as x→ ∞,

#{p ≤ x : p+ r is prime} ∼S(r)
x

log2x
,

where

S(r) :=

⎧
⎪⎨

⎪⎩

2
∏

� �=2

�(�−2)
(�−1)2

∏

�|r, � �=2

�−1
�−2

if 2 | r,

0 otherwise.
(1)

Here and everywhere in the paper, p and � are used to denote primes.
Even though still inaccessible by current methods, the twin prime conjecture

has generated tremendous advances in number theory. In particular, in 1915–1919,
V. Brun developed what is now known as the theory of the Brun sieve to prove
that

∑
p

p+2 prime
1
p < ∞, as well as upper bounds of the right order of magnitude

for the number of twin primes p ≤ x. Brun’s methods opened the way to sieve
theory, leading to the important achievement of J. Chen from 1966 that #{p ≤ x :
p+ r = P2} � x

log2 x , where, for an integer k, Pk denotes the product of at most
k primes. This result relies on other major achievements of sieve theory, such as
applications of the large sieve to averages of primes in an arithmetic progression.
Subsequently, further important work has been done concerning average versions
of the twin prime conjecture, the size of the set of exceptions to the twin prime
conjecture, and the size of small gaps between consecutive primes.

The twin prime conjecture can be generalized in many directions. For instance,
the Hardy-Littlewood heuristic can be used to predict the (same) asymptotic for-
mula for the number of primes p ≤ x such that p−1

2 is also a prime. This question
may be reformulated as counting the number of primes p ≤ x such that the group
F∗
p/{±1} is of prime order. Such a reformulation may then be easily generalized

to other groups, such as the group of points of an elliptic curve: given an elliptic
curve E/Q over the field of rational numbers, count the number of primes p ≤ x

of good reduction for E such that the group E(Fp)/E(Q)tors is of prime order,
where E(Fp) denotes the reduction of E modulo p and E(Q)tors denotes the tor-
sion subgroup of E/Q. This question has theoretical relevance to elliptic curve
cryptography and was first considered by N. Koblitz in 1988:

KOBLITZ’S CONJECTURE. (see [Ko]) Let E/Q be an elliptic curve defined
over the field of rational numbers. Then there exists a constant C(E) such that, as
x→ ∞,

πtwinE (x) := #
{
p≤ x :

∣
∣E
(
Fp

)∣
∣ is prime

}∼ C(E)
x

log2x
.

We remark that the constant C(E) in Koblitz’s conjecture can be zero, and the
asymptotic relation is then interpreted to mean that there are only finitely many
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primes p such that |E(Fp)| is prime. This happens for curves isogenous to a curve
with non-trivial rational torsion, but not exclusively. It also happens, for example,
for the curve with Weierstrass equation Y 2 = X3+ 9X + 18 which is not isoge-
nous to a curve with rational torsion, but has the property that (|E(Fp)|,6)> 1 for
any prime p. This example is due to N. Jones and is discussed in [Zy2]; for other
examples, see [Jo3].

A candidate for the explicit constant C(E) was given by Koblitz in his paper
and was later corrected by Zywina [Zy2] in the generic case of an elliptic curve
E/Q without complex multiplication; in this case, it will also be described in detail
in Section 2. For the case of an elliptic curve E/Q with complex multiplication,
we refer the reader to [Ko, Jo1, Zy2].

To investigate Koblitz’s conjecture, it is useful to write the number of points of
E over Fp as

∣
∣E
(
Fp

)∣
∣= p+1−ap(E),

where ap(E) satisfies the Hasse bound |ap(E)| ≤ 2√p. In particular, this makes
the analogy between Koblitz’s conjecture and the twin prime conjecture more ap-
parent.

Based on this analogy, one can employ sieve methods to find partial results to-
wards Koblitz’s conjecture. This approach was initiated byMiri and Murty [MiMu]
and further refined by Steuding and Weng [StWe], the second author [Co], Iwaniec
and Jiménez Urroz [IwJU, JU], and the third author and Wu [DaWu]. Conse-
quently, we currently know: upper bounds of the right order of magnitude for
πtwinE (x), provided a Generalized quasi-Riemann Hypothesis holds if E/Q is with-
out complex multiplication and unconditional otherwise [Co, Zy1]; various lower
bounds in the style of Chen’s result [MiMu, StWe, Co, IwJU, JU, DaWu], again
conditional ifE/Q is without complex multiplication and unconditional otherwise.
Regarding lower bounds, the best result was obtained in [JU] for elliptic curves
with complex multiplication; namely,

#
{
p≤ x :

1
tE

∣
∣E
(
Fp

)∣
∣= P2

}
� x

log2x
,

where tE is the least common multiple of |E′(Q)tors|, with E′ varying over all
elliptic curves over Q which are Q-isogenous to E.

The main purpose of our paper is to prove the validity of Koblitz’s conjecture
on average over a set of elliptic curves E/Q:

THEOREM 1. Let x > 0 be a variable and let ε > 0. Let A=A(x), B =B(x)

be parameters such that A,B > xε and AB > x log10x. Let C = C(A,B) be the set
of elliptic curves E(a,b): Y 2 =X3+aX+b, where a,b∈Z with |a| ≤A, |b| ≤B.
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Then, as x→ ∞,

1
|C|
∑

E∈C
πtwinE (x) = C

x

log2x
+O
(

x

log3x

)

,

where C is the non-zero constant

C :=
2
3
∏

� �=2

�4−2�3− �2+3�
(�−1)3(�+1)

=
∏

�

(

1− �2− �−1
(�−1)3(�+1)

)

≈ 0.505166168239435774.

As will be explained in Section 2, the average constant C gives further evidence
for the conjectural constant of Koblitz’s conjecture. In particular, it leads to the
following “almost all” result:

COROLLARY 2. We keep the above notation and consider a family C=C(A,B)

of elliptic curves for whichA,B >xε,AB >x2 log14x and limA,B→∞
logB·log7A

B =

0. Then, for any real positive function f(x) = o(logx), with at most

Oε

(
f(x)2

log2x
|C|
)

exceptions, the curves E ∈ C satisfy the refined Koblitz conjecture
∣
∣
∣
∣π

twin
E (x)−C(E)

x

log2x

∣
∣
∣
∣�

x

f(x) log2x
.

Thus, even though we do not construct any particular elliptic curve E/Q for
which Koblitz’s conjecture holds, we provide strong evidence that the conjecture
is indeed true.

Theorem 1 is the consequence of two key ingredients of independent interest,
which we state below. The first one is concerned with the distribution of elliptic
curves over a fixed finite field and having a prime number of points:

THEOREM 3. Let p be a prime and let

π∗(p) := #
{
E/Fp elliptic curve :

∣
∣E
(
Fp

)∣
∣ is prime

}
.

Then, as x→ ∞,

∑

p≤x

π∗(p) =
Cx3

3log2x
+O
(

x3

log3x

)

,

where C is the constant of Theorem 1.

The second ingredient is an average of the standard twin prime conjecture.
Such averages were first considered by Tchudakoff [Tch] and Lavrik [Lav], and
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then, among others, by Balog [Bal], who added distribution in residue classes, and
by Perelli and Pintz [PePi], who shortened the average. The length of the aver-
age needed for our application to elliptic curves is dictated by Hasse’s bound and
is short (

√
x compared to x); additionally, we also need distribution in residue

classes. Such a mixture of additional features is not in the literature and is proven
here:

THEOREM 4. Let x> 0 and let ε,M > 0. Then there exists an integerN(M)>

0 such that, for any x 1
3+ε ≤ R ≤ x, N > N(M), Q ≤ xlog−N x, and X, Y satis-

fying 2≤X+Y ≤ x, we have

∑

0<|r|≤R

∑

q≤Q

∑

a(modq)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

X<p≤X+Y

p≡a(modq)
p−p′=r

logp · logp′ −S(r,q,a)Y

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

� Rx2

logM x
,

where

S(r,q,a) :=

⎧
⎨

⎩

1
φ(q)

S(rq) if 2 | r, (a,q) = (a− r,q) = 1,

0 otherwise,

S(rq) is as in (1) and φ(q) is the Euler function of q. Here (and in what follows),
q denotes a positive integer, and p, p′ and � denote rational primes.

Remarks. (1) There are several open questions about the reductions of an ellip-
tic curve E/Q modulo primes. In particular, for a fixed integer a �= 0, a conjecture
of Lang and Trotter [LaTr] predicts that, as x→ ∞,

#
{
p≤ x : ap(E) = a

}∼ C ′(E)

√
x

logx

for some constant C ′(E). This conjecture is known to hold on average over elliptic
curves E/Q in a two-parameter family C = C(A,B) [DaPa1]. The size of this
family was further reduced from A,B > x1+ε [DaPa1] to A,B > xε, AB > x

3
2+ε

[Bai] by following the techniques of [FoMu].
(2) The size of the family C in Theorem 1 is substantially smaller than that in

the aforementioned average of the Lang-Trotter conjecture of [Bai]. This is because
the set of elliptic curves over E/Fp with a fixed trace ap(E) is far thinner (among
all elliptic curves over Fp) than the set of elliptic curves over Fp for which the
group of points has prime order.

(3) Theorem 1 and Corollary 2 may be viewed as GL2-generalizations of the
various existing average results for the twin prime conjecture, in particular of The-
orem 4. Similarly, the average results for the Lang-Trotter conjecture above may
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be viewed as GL2-generalizations of the Barban-Davenport-Halberstam Theorem
on averages of primes in an arithmetic progression. While we do not compare the
orders of difficulty of the Lang-Trotter and Koblitz’s conjectures, our work shows
that the average of Koblitz’s conjecture requires a finer analysis than the average
of the Lang-Trotter conjecture.

(4) Similarly to the work on the exceptional set in the twin prime conjecture
(see [MoVa, PePi]), it would be interesting to investigate further the size of the
exceptional set in Koblitz’s conjecture and thus improve on Corollary 2.

(5) Theorem 3 is only concerned with the distribution of elliptic curves over
Fp having a prime number of points. More properties of this distribution could be
obtained by considering the higher moments

Mk(x) :=
∑

p≤x

(
π∗(p)

)k for k ≥ 1.

(6) Finally, we remark that Koblitz’s conjecture has a version stated over num-
ber fields in [Zy2], and it would be interesting to see if one can obtain evidence for
this more general conjecture by averaging over curves over number fields. Some
averages of the Lang-Trotter conjecture over number fields were considered for
K = Q(i) in [DaPa2], and, very recently, for abelian extensions of Q in [Wa]. It
would be interesting to do a similar analysis for Koblitz’s conjecture.

The structure of the paper is as follows. In Section 2, we present the heuristic
reasoning behind Koblitz’s conjecture and discuss the constant C. In Section 3, we
reduce Theorem 1 to Theorem 3 and we prove Corollary 2. In Section 4, we reduce
the statement of Theorem 3 to an average of Kronecker class numbers (Proposition
12). In Section 5, we show how an average of the twin prime conjecture (Proposi-
tion 13) implies Proposition 12. Finally, in Sections 6–7, we give the proofs of the
afore-mentioned Proposition 13 and of Theorem 4.

Acknowledgments. The authors thank Andrew Granville, Nathan Jones and
Igor Shparlinski for helpful comments, and the referees for their careful reading
of the paper and useful suggestions. Part of this work was done while (some of)
the authors visited the American Institute for Mathematics (Palo Alto, USA), the
Fields Institute for Research in Mathematical Sciences (Toronto, Canada), and the
Max Plank Institute for Mathematics (Bonn, Germany); the authors thank these
institutes for the financial support and work facilities provided.

2. Average of Koblitz’s conjecture and the conjectural constant. The
constant C(E) in Koblitz’s conjecture is based on the following heuristic argument,
which is reminiscent of the argument leading to the classical twin prime constant
of Hardy and Littlewood (as explained, for example, in [So]).

LetE/Q be an elliptic curve without complex multiplication. We want to count
the number of primes p such that |E(Fp)|= p+1−ap(E) is also a prime. We need
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to ensure that, for each prime �, the number p+ 1− ap(E) is not divisible by �.
Clearly, for a fixed prime �, the probability that a random integer n is not divisible
by � is (�−1)/�. To compute the probability that � � p+1−ap(E), we consider the
action of Gal(Q̄/Q) on the torsion points of E, which leads to the absolute Galois
representation

ρE : Gal(Q̄/Q)−→ GL2(Ẑ)

attached to E, and, in particular, for any integerm, to the injection

ρE,m : Gal
(
Q
(
E[m]

)
/Q
)
↪→ GL2(Z/mZ),

where Q(E[m]) is the field obtained by adjoining to Q the coordinates of the m-
division pointsE[m]. By studying the action of the Frobenius map σp on the torsion
points of E, it follows that

tr
(
ρE,m

(
σp
))≡ ap(E) (modm),

det
(
ρE,m

(
σp
))≡ p (modm),

for all primes p �m of good reduction for E. Then, for a prime �, the probability
that � � p+1−ap(E) may be evaluated by counting matrices g in GL2(Z/�Z) such
that det(g)+1− tr(g) �≡ 0(mod �).

Let G(m) be the image of ρE,m in GL2(Z/mZ) and let

Ω(m) :=
{
g ∈G(m) :

(
det(g)+1− tr(g),m

) �= 1
}
.

In particular, ifm= �,

Ω(�) =
{
g ∈G(�) : det(g)+1− tr(g)≡ 0(mod�)

}
.

Then, at each prime �, the correcting probability factor is the quotient

1− |Ω(�)|
|G(�)|

1− 1
�

,

where the numerator is the probability that p+1−ap(E) is not divisible by � and
the denominator is the probability that a random integer is not divisible by �.

If G(�) = GL2(Z/�Z), then we have

1− |Ω(�)|
|G(�)|

1− 1
�

= 1− �2− �−1
(�−1)3(�+1)

.

If E/Q is without complex multiplication, the constant C(E) of [Ko] is de-
fined as the product over all primes � of the local factors above. But the proba-
bilities are not necessarily independent from one prime to another, as observed by
Serre [Se]; Zywina [Zy2] refined the constant C(E) by including this observation.
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The dependence of the probabilities can be quantified: there is an integer
mE which has the property that the probabilities are independent for primes
� �mE; more precisely, mE is the smallest positive integer such that the image of
Gal(Q̄/Q) under the absolute Galois representation of E is π−1(G(mE)), where
π : Gl2(Ẑ) −→ GL2(Z/mEZ) is the natural projection. For each elliptic curve
E/Q without complex multiplication, the constant C(E) in Koblitz’s conjecture
is then expected to be

C(E) =
1− |Ω(mE )|

|G(mE )|
∏

�|mE

(
1− 1

�

) ×
∏

��mE

(

1− �2− �−1
(�−1)3(�+1)

)

.(2)

Some numerical evidence for this constant can be found in [Zy2].
We remark that, even thoughmE is never 1 [Se], it is possible for some elliptic

curves E/Q to have

C(E) =
∏

�

(

1− �2− �−1
(�−1)3(�+1)

)

= C.

Indeed, as shown in [Jo1, Proposition 14], if E/Q is a Serre curve such that
the squarefree part of its minimal discriminant is ≡ 2,3(mod4), then C(E) = C;
moreover, it was shown by Jones in a previous work [Jo2] that, in an average
sense, most curves E/Q are Serre curves. (We recall that an elliptic curve E/Q
is called a Serre curve if, for each positive integer m, one has [GL2(Z/mZ) :
Gal(Q(E[m])/Q)] ≤ 2.)

The average constant C of Theorem 1 should not be thought of, however, as
the constant of any given curve over Q, but as the average of all the constants
C(E). Indeed, in [Jo1], Jones shows that if one assumes a positive answer to a
well-known question of Serre, then the average of the conjectural constants C(E)

of (2) is indeed the average constant of Theorem 1. This result is now known to
hold unconditionally [Zy2]. Our result then gives evidence for both the asymptotic
of Koblitz’s conjecture and the constant appearing in the conjecture.

THEOREM 5 (Jones [Jo1, Theorem 6], Zywina [Zy2, Proposition 9.1]). For
any positive integer k, we have that, as A,B→ ∞,

1
|C|
∑

E∈C

∣
∣C(E)−C

∣
∣k �k max

⎧
⎨

⎩

(
logB · (logA)7

B

) k
k+1

,
logγ

(
min{A,B})

√
min{A,B}

⎫
⎬

⎭

for some explicit constant γ. In particular, if limA,B→∞
logB·log7A

B = 0, then
1
|C|
∑

E∈CC(E)∼ C.
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3. Reduction of Theorem 1 and Corollary 2 to Theorem 3. In this sec-
tion we show how Theorem 1 and its Corollary 2 reduce to Theorem 3. We will
place a special emphasis on the length of the average in Theorem 1, which, as we
mentioned, is shorter than what can be obtained for the average of the Lang-Trotter
conjecture.

3.1. Reduction of Theorem 1 to Theorem 3. Let x > 0 and let C be the
family of elliptic curves introduced in Theorem 1. In this section we show how the
average of πtwinE (x) over E/Q reduces to an average of π∗(p), which is estimated
in Theorem 3.

As a start, let us write

1
|C|
∑

E∈C
πtwinE (x) =

1
|C|
∑

p≤x

∑

s,t∈Fp

#
{|a| ≤A, |b| ≤B : a≡ s(modp),

b≡ t(modp),
∣
∣E(a,b)

(
Fp

)∣
∣ prime

}

=
1
|C|
∑

p≤x

∑

s,t∈Fp

|E(s,t)| prime

∑

|a|≤A, |b|≤B

a≡s(modp)
b≡t(modp)

1,

where E(s,t) is the elliptic curve over Fp with model Y 2 = X3 + sX + t and
|E(s,t)| is the number of its Fp-rational points. Thus we partitioned the elliptic
curves in C according to their models over Fp.

Note that the number of terms in the middle sum above is π∗(p). The innermost
sum is simply

(
2A
p

+O(1)
)(

2B
p

+O(1)
)

∼ 4AB
p2

,

provided A,B are large enough with respect to x. This leads to the asymptotic

1
|C|
∑

E∈C
πtwinE (x)∼

∑

p≤x

π∗(p)
p2

.

We remark that this approach leads to a poor average, since we need to take
AB>x2+ε in order to obtain the asymptotic formula above. A substantial improve-
ment can be obtained from a better use of the uniform distribution of isomorphic
elliptic curves. More precisely, instead of partitioning the elliptic curves in C ac-
cording to their models over Fp, we partition them according to their isomorphism
classes over Fp, as follows.
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After fixing an elliptic curve E(s,t) over Fp, we enumerate the curves
E(a,b) ∈ C whose reduction modulo p is isomorphic to E(s,t) over Fp. It is well
known that, if s,t,a,b ∈ Fp, then the two elliptic curves E(s,t) and E(a,b) are
isomorphic over Fp if and only if a= su4 and b= tu6 for some u ∈ F∗

p; moreover,
there are (p− 1)/|Aut(E(s,t))| elliptic curves over Fp which are Fp-isomorphic
to E(s,t). Here, Aut(E) is the automorphism group of the elliptic curve E. This
approach leads to

1
|C|
∑

E∈C
πtwinE (x) =

1
|C|
∑

p≤x

∑

s,t∈Fp

|E(s,t)| prime

|Aut(E(s,t)
)|

p−1
∑

|a|≤A, |b|≤B, ∃1≤u<p:
a≡su4(modp)
b≡tu6(modp)

1,(3)

where, for each fixed s,t ∈ Fp, the innermost sum is over all integers |a| ≤ A,
|b| ≤B such that there exists u ∈ F∗

p with a≡ su4(modp) and b≡ tu6(modp).
We calculate the innermost sum (on average over p, s, and t) using a character

sum method borrowed from Banks and Shparlinski [BaSh] with their kind permis-
sion. The resulting tool of this method is the following lemma, which we prove at
the end of the section:

LEMMA 6. For a fixed prime p and fixed s,t ∈ F∗
p, let wp,s,t ∈ C be such that

|wp,s,t| ≤ 1. Let A,B > 0. Then, for any positive integer k, we have that, as x→ ∞,

∑

p≤x

1
p

∑

1≤s, t<p

wp,s,t

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

|a|≤A, |b|≤B, ∃1≤u<p:
a≡su4(modp)
b≡tu6(modp)

1− 2AB
p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�k ABx
1− 1

2k log
k
2−1x+

(
A
√
B+B

√
A
)
x1+

1
2k log

k
2−1x+

√
ABx

3
2 log2x.

In our application, the weights wp,s,t are 1 or 0, according to whether |E(s,t)|
is prime or not.

Since

∣
∣Aut

(
E(s,t)

)∣
∣=

⎧
⎪⎨

⎪⎩

6 if s= 0 and p≡ 1(mod3),
4 if t= 0 and p≡ 1(mod4),
2 otherwise,

and

|C|= 4AB+O(A+B),
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we can rewrite (3) as

1
|C|
∑

E∈C
πtwinE (x) =

1
|C|
∑

p≤x

∑

s,t∈Fp

|E(s,t)| prime

2
p−1

∑

|a|≤A, |b|≤B, ∃1≤u<p:
[2pt]a≡su4(modp),

b≡tu6(modp)

1

+O

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
|C|
∑

p≤x

∑

|a|≤A

|b|≤B

ab≡0(modp)

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
2
|C|
∑

p≤x

1
p−1

∑

s,t∈Fp

wp,s,t

∑

|a|≤A, |b|≤B, ∃1≤u<p:
a≡su4(modp),
b≡tu6(modp)

1

+O
(

log logx+
x

A logx
+

x

B logx

)

.

(4)

For the last two lines above, we use Lemma 6 to estimate the main term and we
observe that the error term is smaller than the one in Lemma 6. Then we obtain:

1
|C|
∑

E∈C
πtwinE (x)

=
∑

p≤x

π∗(p)
p(p−1)

+Ok

(

x1−
1
2k log

k
2−1x+

(
1√
A
+

1√
B

)

x1+
1
2k log

k
2−1x+

1√
AB

x
3
2 log2x

)

(5)

for any positive integer k. Choosing A, B such that A,B >xε and AB >x log10x,
Theorem 1 now follows easily from (5), Theorem 3, partial summation, and from
choosing the integer k large enough to have that εk > 1.

3.2. Proof of Corollary 2. Let

μ :=
1
|C|
∑

E∈C
πtwinE (x).
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We consider

1
|C|
∑

E∈C

∣
∣
∣
∣π

twin
E (x)−C

x

log2x

∣
∣
∣
∣

2
=

(
1
|C|
∑

E∈C
πtwinE (x)2

)

+

(

μ−C
x

log2x

)2
−μ2

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
|C|
∑

E∈C

∑

p,p′≤x

p �=p′

|E(Fp)|,|E(Fp′)| prime

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+μ−μ2+
(

μ−C
x

log2x

)2
,

(6)

where p, p′ denote primes. For μ and the last term above, we will use the estimates
given by Theorem 1 provided that the family C is large enough (i.e. provided that
A,B > xε and AB > x log10x). For the first term on the right-hand side of (6) we
will obtain an exact formula with main term μ2. We proceed as follows.

As in our deduction of formula (3), by partitioning the elliptic curves in C
according to their isomorphism classes over Fp and Fp′ , we obtain

1
|C|
∑

E∈C

∑

p,p′≤x

p �=p′

|E(Fp)|,|E(Fp′)| prime

1=
1
|C|
∑

p,p′≤x

p �=p′

1
(p−1)(p′ −1)

×
∑

s,t∈Fp

s′,t′∈Fp′

wp,s,twp′,s′,t′
∣
∣Aut

(
E(s,t)

)∣
∣

· ∣∣Aut(E(s′, t′)
)∣
∣ ·S(p,p′,s, t,s′, t′),

where wp,s,t,wp′,s′,t′ are 1 or 0 according to whether |E(s,t)|, |E(s′, t′)|, respec-
tively, are prime or not, and

S(p,p′,s, t,s′, t′)

is the number of integers |a| ≤A, |b| ≤B such that there exist 1≤u<p, 1≤u′<p′

satisfying

a≡ su4(modp), a≡ s′u′4(modp′), b≡ tu6(modp), b≡ t′u′6(modp′).

We now use the following generalization of Lemma 6, which will be proved at the
end of the section:
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LEMMA 7. For fixed primes p, p′ and fixed s,t ∈ F∗
p, s′, t′ ∈ F∗

p′ , let wp,s,t,
wp′,s′,t′ ∈C be such that |wp,s,t|, |wp′,s′,t′ | ≤ 1. Let A,B > 0. Then, for any positive
integer k, we have that, as x→ ∞,

∑

p,p′≤x

p �=p′

1
pp′

∑

1≤s,t<p

1≤s′,t′<p′

wp,s,twp′,s′,t′

∣
∣
∣
∣S(p,p

′,s, t,s′, t′)− AB

pp′

∣
∣
∣
∣

�k ABx
2− 1

2k log
k
2−1x+

(
A
√
B+B

√
A
)
x2+

1
k log

k
2+

1
2k−2x+

√
ABx3 logx.

Similarly to our deduction of (5), we obtain that

1
|C|
∑

E∈C

∑

p,p′≤x

p �=p′

|E(Fp)|,|E(Fp′)| prime

1

=
∑

p,p′≤x

p �=p′

π∗(p)π∗(p′)
p(p−1)p′(p′ −1)

+Ok

(

x2−
1
2k log

k
2−1x+

(
1√
A
+

1√
B

)

x2+
1
k log

k
2+

1
2k−2x+

1√
AB

x3 logx
)

.

(7)

By using the trivial bound π∗(p)� p2, we see that

∑

p,p′≤x
p �=p′

π∗(p)π∗(p′)
p(p−1)p′(p′ −1)

=

(
∑

p≤x

π∗(p)
p(p−1)

)2

−
∑

p≤x

π∗(p)2

p2(p−1)2

=

(
∑

p≤x

π∗(p)
p(p−1)

)2

+O
(

x

logx

)

.

(8)

Moreover, by appealing to formula (5) and the upper bound μ� x
log2 x resulting

from Theorem 1, we obtain

(
∑

p≤x

π∗(p)
p(p−1)

)2

= μ2+Ok

(

x2−
1
2k log

k
2−3x+

(
1√
A
+

1√
B

)

x2+
1
2k log

k
2−3x+

1√
AB

x
5
2

)

+Ok

(

x2−
1
k logk−2x+

(
1
A

+
1
B

)

x2+
1
k logk−2x+

1
AB

x3 log4x
)

.

(9)
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By plugging (7)–(9) back into (6), we obtain

1
|C|
∑

E∈C

∣
∣
∣
∣π

twin
E (x)−C

x

log2x

∣
∣
∣
∣

2
�k

x2

log6x
+

1√
AB

x3 logx

+

(
1√
A

+
1√
B

)

x2+
1
k log

k
2+

1
2k−2x

�ε
x2

log6x
,

provided that k = 2
ε , A,B > xε, and AB > x2 log14x, where ε > 0 is fixed and

arbitrarily small.
Now we apply Theorem 5 to deduce

1
|C|
∑

E∈C

∣
∣
∣
∣π

twin
E (x)−C(E)

x

log2x

∣
∣
∣
∣

2
�ε

x2

log6x
,(10)

provided that A,B > xε, AB > x2 log14x, and limA,B→∞
logB·log7A

B = 0.
Finally, let f(x) be any real function such that f(x) = o(logx). Then (10)

implies that

#
{

E ∈ C :
∣
∣
∣
∣π

twin
E (x)−C(E)

x

log2x

∣
∣
∣
∣�

x

f(x) log2x

}

� f(x)2 log4x
x2

∑

E∈C

∣
∣
∣
∣π

twin
E (x)−C(E)

x

log2x

∣
∣
∣
∣

2

�ε
f(x)2

log2x
|C|.

This completes the proof of Corollary 2. �

3.3. Character sums. The rest of this section consists of proving Lemmas
6 and 7. Let us note that we make no effort to write the error term in terms of
the weights wp,s,t, as we will use the trivial bound |wp,s,t| ≤ 1 for our application.
(The present method using the trivial bound on the weights also works in the case
when the weight function wp,s,t is supported on a sparse set. However, in that case
the result is less satisfactory: the method recovers the results of Baier [Bai] and
Fouvry and Murty [FoMu] about the average Lang-Trotter conjecture on Frobenius
traces, but does not seem to improve upon them, even after a careful analysis of the
contribution of the weights to the error term.) Our proofs will rely on two important
analytic results, which we state below.

THEOREM 8. (The large sieve inequality) LetM,N,Q be positive integers and
(an)n a sequence of complex numbers. For a fixed q ≤Q, we denote by χ Dirichlet
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characters modulo q. Then

∑

q≤Q

q

ϕ(q)

∑

χ(modq)
χ primitive

∣
∣
∣
∣
∣

∑

M<n≤M+N

anχ(n)

∣
∣
∣
∣
∣

2

≤ (N +3Q2)
∑

M<n≤M+N

∣
∣an
∣
∣2.

Proof. For a proof, see [Da, p. 160]. �

THEOREM 9. ( The fourth power moment of Dirichlet L-functions; Friedlan-
der and Iwaniec [FrIw]) Let p be a prime and N a positive integer. Let χ denote
Dirichlet characters modulo p, with χ0 denoting the principal character. Then

∑

χ �=χ0

∣
∣
∣
∣
∣

∑

n≤N

χ(n)

∣
∣
∣
∣
∣

4

�N 2p log6 p.

Proof of Lemma 6. Let p be a prime and let 1 ≤ s,t < p. In what follows,
χ,χ1,χ2 will denote Dirichlet characters modulo p, and χ0 the principal Dirichlet
character modulo p. As usual, χ will denote the complex conjugate of χ. We first
rewrite the sum over a and b by means of characters. Note that, for fixed s,t,a,b, if
there exists one u(modp) such that a≡ su4(modp) and b≡ tu6(modp), then there
exist exactly two such u, namely ±u. By the orthogonality of characters, we obtain
that

∑

|a|≤A, |b|≤B, ∃1≤u<p:
a≡su4(modp)
b≡tu6(modp)

1=
1
2
∑

1≤u≤p−1

∑

|a|≤A

∑

|b|≤B

(
1

p−1
∑

χ1

χ1
(
su4
)
χ1(a)

)

×
(

1
p−1

∑

χ2

χ2
(
tu6
)
χ2(b)

)

=
1

2(p−1)2
∑

χ1,χ2

χ1(s)χ2(t)U
(
χ41χ

6
2
)A(χ1

)B(χ2
)
,

where

U(χ) :=
∑

1≤u≤p−1
χ(u) =

{
p−1 if χ= χ0,

0 if χ �= χ0,
(11)

and

A(χ) :=
∑

|a|≤A

χ(a), B(χ) :=
∑

|b|≤B

χ(b).
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Using (11), we obtain further that

∑

|a|≤A, |b|≤B, ∃1≤u<p:
a≡su4(modp)
b≡tu6(modp)

1=
1

2(p−1)
∑

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A
(
χ1
)B(χ2

)
.(12)

The contribution of χ1 = χ2 = χ0 to (12) is

1
2(p−1)

∑

|a|≤A

p�a

∑

|b|≤B

p�b

1=
2AB
p

+O
(
AB

p2
+
A

p
+
B

p

)

.

The contribution of χ1 = χ0, χ2 �= χ0 to (12) is

� A

p

∑

χ6
2=χ0

χ2 �=χ0

∣
∣B(χ2

)∣
∣;

similarly, the contribution of χ1 �= χ0, χ2 = χ0 to (12) is

� B

p

∑

χ4
1=χ0

χ1 �=χ0

∣
∣A(χ1

)∣
∣.

We note that these estimates are independent of s and t.
Replacing these three contributions in (12) and using the trivial bound for the

weights, |wp,s,t| ≤ 1, we infer that

∑

p≤x

1
p

∑

1≤s,t<p

wp,s,t

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

|a|≤A, |b|≤B, ∃1≤u<p:
a≡su4(modp)
b≡tu6(modp)

1− 2AB
p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∑

p≤x

1
2p(p−1)

∑

1≤s,t<p

wp,s,t

∑

χ4
1χ

6
2=χ0

χ1 �=χ0, χ2 �=χ0

χ1(s)χ2(t)A
(
χ1
)B(χ2

)
(13)

+O

⎛

⎜
⎜
⎜
⎝

∑

p≤x

(
AB

p
+A+B

)

+A
∑

p≤x

∑

χ6
2=χ0

χ2 �=χ0

∣
∣B(χ2

)∣
∣+B

∑

p≤x

∑

χ4
1=χ0

χ1 �=χ0

∣
∣A(χ1

)∣
∣

⎞

⎟
⎟
⎟
⎠
.(14)
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The contribution of the first sum in the error term (14) is smaller than that of the
first two terms on the right-hand side of Lemma 6. For the contribution of the
second (and third) sum in the error term (14), we note that there are at most 6 (at
most 4) characters satisfying χ62 = χ0 (χ41 = χ0). By Hölder’s inequality, we have
that, for any k ≥ 1,

A
∑

p≤x

∑

χ6
2=χ0

χ2 �=χ0

∣
∣B(χ2

)∣
∣≤ 2A

∑

p≤x

∑

χ6
2=χ0

χ2 �=χ0

∣
∣
∣
∣
∣

∑

b≤B

χ2(b)

∣
∣
∣
∣
∣

≤ 2A

⎛

⎜
⎜
⎜
⎝

∑

p≤x

∑

χ6
2=χ0

χ2 �=χ0

1

⎞

⎟
⎟
⎟
⎠

1− 1
2k ⎛

⎝
∑

p≤x

∑

χ2 �=χ0

∣
∣
∣
∣
∣

∑

b≤B

χ2(b)

∣
∣
∣
∣
∣

2k
⎞

⎠

1
2k

.

Rewriting

∣
∣
∣
∣
∣

∑

b≤B

χ2(b)

∣
∣
∣
∣
∣

2k

=

∣
∣
∣
∣
∣

∑

b≤Bk

τk(b)χ2(b)

∣
∣
∣
∣
∣

2

,

where τk(b) is the number of ways of writing b as the product of k positive integers
at most B, and using the large sieve, we then obtain that

A
∑

p≤x

∑

χ6
2=χ0

χ2 �=χ0

∣
∣B(χ2

)∣
∣

�k A

(
x

logx

)1− 1
2k ((

x2+Bk)Bk logk
2−1Bk

) 1
2k .

(15)

We may assume that B ≤ x2 and then replace logB by logx in (15). Indeed,
if B > x2, using k = 1, the right-hand side of (15) is bounded by AB(x/ logx)1/2,
which is smaller than the error term of Lemma 6 for any positive integer k.

Similarly, we deduce that

B
∑

p≤x

∑

χ4
1=χ0

χ4 �=χ0

∣
∣A(χ1

)∣
∣

�k B

(
x

logx

)1− 1
2k ((

x2+Ak
)
Ak logk

2−1x
) 1
2k .
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Using these last two estimates in (13) and (14), we arrive at

∑

p≤x

1
p

∑

1≤s,t<p

wp,s,t

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

|a|≤A, |b|≤B, ∃1≤u<p:
a≡su4(modp)
b≡tu6(modp)

1− 2AB
p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∑

p≤x

1
2p(p−1)

∑

χ4
1χ

6
2=χ0

χ1 �=χ0, χ2 �=χ0

Wp

(
χ1,χ2

)A(χ1
)B(χ2

)

+Ok

(
ABx1−

1
2k log

k
2−1x+

(
A
√
B+B

√
A
)
x1+

1
2k log

k
2−1x

)
,

(16)

where

Wp

(
χ1,χ2

)
:=

∑

1≤s,t<p

wp,s,tχ1(s)χ2(t).

Two uses of the Cauchy-Schwarz inequality lead to

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

χ4
1χ

6
2=χ0

χ1 �=χ0, χ2 �=χ0

Wp

(
χ1,χ2

)A(χ1
)B(χ2

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

4

≤

⎛

⎜
⎜
⎜
⎝

∑

χ4
1χ

6
2=χ0

χ1 �=χ0, χ2 �=χ0

∣
∣Wp

(
χ1,χ2

)∣
∣2

⎞

⎟
⎟
⎟
⎠

2

∑

χ4
1χ

6
2=χ0

χ1 �=χ0, χ2 �=χ0

∣
∣A(χ1

)∣
∣4

∑

χ4
1χ

6
2=χ0

χ1 �=χ0, χ2 �=χ0

∣
∣B(χ2

)∣
∣4.

(17)

We can now apply Theorem 9 to the second and third character sums above,
using the fact that for any fixed character χ1 there are at most 6 characters χ2 (or
for any fixed character χ2 there are at most 4 characters χ1) satisfying the condition
χ41χ

6
2 = χ0. This implies that

∑

χ4
1χ

6
2=χ0

χ1 �=χ0, χ2 �=χ0

∣
∣A(χ1

)∣
∣4

∑

χ4
1χ

6
2=χ0

χ1 �=χ0, χ2 �=χ0

∣
∣B(χ2

)∣
∣4 �A2B2p2 log12 p.(18)
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For the first character sum, we extend the sum over all pairs of characters modulo
p (including the trivial character) to get that

∑

χ1

∑

χ2

∣
∣Wp

(
χ1,χ2

)∣
∣2

=
∑

1≤s,t<p

∑

1≤s′,t′<p

wp,s,twp,s′,t′
∑

χ1

χ1(s)χ1(s′)
∑

χ2

χ2(t)χ2(t′)

= (p−1)2
∑

1≤s,t<p

∣
∣wp,s,t

∣
∣2 ≤ (p−1)4.

(19)

Replacing (18) and (19) in (17) and then in (16), we finally obtain

∑

p≤x

1
p

∑

1≤s,t<p

wp,s,t

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

|a|≤A, |b|≤B, ∃1≤u<p:
a≡su4(modp)
b≡tu6(modp)

1− 2AB
p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�k ABx
1− 1

2k log
k
2−1x+

(
A
√
B+B

√
A
)
x1+

1
2k log

k
2−1x

+
√
ABx

3
2 log2x,

which finishes the proof of Lemma 6. �

Proof of Lemma 7. The proof of Lemma 7 is a generalization of that of Lemma
6 and thus will only be outlined.

Let p, p′ be distinct primes and let 1 ≤ s,t < p, 1 ≤ s′, t′ < p′. As before, we
denote by χ1,χ2 Dirichlet characters modulo p and by χ′

1, χ′
2 Dirichlet characters

modulo p′. The principal characters modulo p and p′ are denoted by χ0 and χ′
0,

respectively; thus χ0χ′
0 is the principal character modulo pp′.

With the same notation as in the proof of Lemma 6, we write

S(p,p′,s, t,s′, t′) =
1

4(p−1)(p′ −1)
∑

χ4
1χ

6
2=χ0

χ1(s)χ2(t)

×
∑

χ′4
1 χ

′6
2 =χ′

0

χ′
1(s)χ

′
2(t)A

(
χ1χ′

1

)
B
(
χ2χ′

2

)

=:
∑

1≤j≤16
Sj(p,p

′,s, t,s′, t′),
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where the sixteen character sums Sj(p,p′,s, t,s′, t′), 1≤ j ≤ 16, correspond to the
cases arising from

χ1 = χ2 = χ0;

χ1 = χ0, χ2 �= χ0, χ
6
2 = χ0;

χ1 �= χ0, χ2 = χ0, χ
4
1 = χ0;

χ1 �= χ0, χ2 �= χ0, χ
4
1χ

6
2 = χ0;

χ′
1 = χ′

2 = χ′
0;

χ′
1 = χ′

0, χ
′
2 �= χ′

0, χ
′6
2 = χ′

0;

χ′
1 �= χ′

0, χ
′
2 = χ′

0, χ
′4
1 = χ′

0;

χ′
1 �= χ′

0, χ
′
2 �= χ′

0, χ
′4
1 χ

′6
2 = χ′

0.

Let us note that the sixteen cases monitor whether any of the characters χ1, χ′
1,

χ2, χ′
2 is principal or not; this, in turn, allows us to determine the main term, to

determine whether χ1χ′
1 is primitive modulo pp′ or not, and so on.

We remark that the first case χ1 = χ2 = χ0,χ
′
1 = χ′

2 = χ′
0 gives

S1(p,p
′,s, t,s′, t′) =

AB

pp′
+O
(
AB

p2p′
+
AB

pp′2
+
A+B

pp′

)

.

Thus

∑

p,p′≤x
p �=p′

1
pp′

∑

1≤s,t<p
1≤s′,t′<p′

wp,s,twp′,s′,t′

(

S(p,p′,s, t,s′, t′)− AB

pp′

)

=
∑

p,p′≤x
p �=p′

1
pp′

∑

1≤s,t<p
1≤s′,t′<p′

wp,s,twp′,s′,t′
∑

2≤j≤16
Sj(p,p

′,s, t,s′, t′)

+O
(

AB
x log logx
logx

+(A+B)
x2

log2x

)

.

The remaining fifteen averages arising from the character sums Sj(p,p′,s, t,s′, t′),
2 ≤ j ≤ 16, are estimated similarly to their analogues in the proof of Lemma 6,
by appealing to the large sieve and the fourth power moment of Friedlander and
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Iwaniec. In particular, for any positive integer k, we obtain
∑

p,p′≤x

p �=p′

1
pp′

∑

1≤s,t<p

1≤s′,t′≤p′

wp,s,twp′,s′,t′
∑

2≤j≤16
Sj(p,p

′,s, t,s′, t′)

�k

√
ABx3 logx

+A

(
x

logx

)1− 1
2k ((

x2+Bk
)
Bk logk

2−1B
) 1
2k

+B

(
x

logx

)1− 1
2k ((

x2+Ak
)
Ak logk

2−1A
) 1
2k

+A

(
x

logx

)2− 1
k ((

x4+Bk
)
Bk logk

2−1B
) 1
2k

+B

(
x

logx

)2− 1
k ((

x4+Ak
)
Ak logk

2−1A
) 1
2k

�k

√
ABx3 logx+

(
A
√
B+B

√
A
)
x2+

1
k log

k
2+

1
2k−2x+ABx2−

1
2k log

k
2−2x.

This completes the proof of Lemma 7. �

4. Reduction of Theorem 3 to an average of Kronecker class numbers.
In this section we reduce Theorem 3 to an average of Kronecker class numbers.
We do this by essentially following the standard method of partitioning our curves
according to their Frobenius trace and by relying on Deuring’s formula (see below).
More explicitely, we first write

π∗(p) =
∑

|r|≤2√p
p+1−r prime

#
{
s,t ∈ Fp : ap

(
E(s,t)

)
= r
}
.

In order to evaluate this sum, we start by counting Weierstrass models Y 2 =X3+

aX+ b of elliptic curves over Fp with p+1− r points for each given r, which can
be done using the following two results.

THEOREM 10. (Deuring’s theorem [De]) For any discriminant d < 0, let h(d)
and w(d) be, respectively, the class number and the number of units of the order of
discriminant d. Let p > 3 be a prime and let r be an integer such that r2−4p < 0.
Let Er(p) be the set of Fp-isomorphism classes of elliptic curves over Fp having
p+1− r Fp-rational points. Then

∑

E∈Er(p)

1
∣
∣Aut(E)

∣
∣
=H

(
r2−4p

)
,
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where, for any D < 0, H(D) is the Kronecker class number

H(D) :=
∑

f2|D
D
f2

≡0,1(mod4)

h
(
D/f 2

)

w
(
D/f 2

) .

In particular, for any fixed −2√p≤ r ≤ 2√p, there are exactly (p−1)H(r2−4p)
Weierstrass models of elliptic curves over Fp with p+1− r points.

LEMMA 11. LetD be a positive integer such that −D≡ 0,1(mod4). Then, as
D→ ∞,

H(−D)�
√
D log2D.

Proof. This follows from the class number formula and from standard bounds
on special values of Dirichlet L-functions; see for example [DaPa1]. �

Using Deuring’s theorem and Lemma 11, we write
∑

p≤x

π∗(p) =
∑

p≤x, |r|≤2√p

p+1−r prime

pH
(
r2−4p

)
+O
(
x2 log2x

)
.(20)

Thus it remains to evaluate an average of class numbers.
Let us remark that the above average of Kronecker class numbers, without

the extra condition that p+ 1− r be prime, is basically the content of the papers
[DaPa1] and [FoMu]. This extra condition complicates the problem considerably
and leads to the main contributions of our paper. More precisely, we will show:

PROPOSITION 12. Let x, X, Y be positive real numbers such that 2 ≤ X +

Y ≤ x. Then, for anyM > 0,

∑

X<p≤X+Y

∑

|r|≤2√X

p+1−r prime

pH
(
r2−4p)= CX2Y

log2 (X+Y )
+O
(
XY 2 log2x

)
+O
(

x3

logM x

)

,

where C is the constant defined in Theorem 1.

The proof of this result will be explained in Section 5. Provided Proposition 12
holds, we can now complete the proof of Theorem 3, and hence also of Theorem 1.

Proof of Theorem 3. Let x > 0. We fix an integerM ≥ 10 and let

K :=
[
log

M
2 x
]
, Y :=

x

K
.

For 0≤ k ≤K−1, let
X =Xk := kY.
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We partition the interval p ≤ x into K intervals of length Y and rewrite the main
term of (20) as

∑

p≤x

|r|≤2√p

p+1−r prime

pH
(
r2−4p

)
=

∑

1≤k≤K−1

∑

X<p≤X+Y

|r|≤2√p

p+1−r prime

pH
(
r2−4p

)
+O
(
Y

5
2 logY

)
,

where the O-term comes from k = 0 and an application of Lemma 11. One more
application of Lemma 11 gives us that the above equals

∑

1≤k≤K−1

∑

X<p≤X+Y

|r|≤2√X

p+1−r prime

pH
(
r2−4p

)
+O
(
Y

5
2 logY

)
+O

(
∑

1≤k≤K−1
XY 2 log2x

)

=
∑

1≤k≤K−1

∑

X<p≤X+Y

|r|≤2√X

p+1−r prime

pH
(
r2−4p

)
+O
(

x3

log
M
2 −2x

)

.

(21)

For the main term of (21) we use Proposition 12 (with the sameM ) and obtain:

∑

1≤k≤K−1

∑

X<p≤X+Y

|r|≤2√X

p+1−r prime

pH
(
r2−4p

)

= CY 3
∑

1≤k≤K−1

k2

log2(kY )
+O

(
∑

1≤k≤K−1
XY 2 log2x

)

+O

(
∑

1≤k≤K−1

x3

logM x

)

+O
(

Y
5
2 log2Y

)

= CY 3
∫ K−1

1

t2

log2(tY )
dt+O

(
x3

log
M
2 −2x

)

= C

∫ x

Y

u2

log2(u)
du+O

(
x3

log
M
2 −2x

)

=
Cx3

3log2x
+O

(
x3

log3x

)

.

(22)

Replacing (21) and (22) in (20), the proof of Theorem 3 is completed. �
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5. Reduction of Proposition 12 to an average twin prime conjecture. In
this section we show how Proposition 12 reduces to an average of the twin prime
conjecture, which, in turn, will be proved completely in Sections 6–7. To be pre-
cise, our proof of Proposition 12 relies on the validity of the following result:

PROPOSITION 13. Let x,M,ε > 0. If N ≥M + 3, then, for any parameters
X, Y , R, U , V satisfying

2≤X+Y ≤ x, R≤ x, x
1
2 logN x≤ U, logN x≤ V, UV 2 ≤ x log−N x,

and as x→ ∞,

∑

|r|≤R
f≤V
n≤U

1
nf

∑

a(mod4n)

(
a

n

)
∑

X<p≤X+Y
p+1−r prime

p≡(r2−af2)/4 (modnf2)

logp · log(p+1− r)

= 2CRY +O
(

Rx

logM x

)

+Oε

(
x

4
3+ε
)
,

(23)

where C is the constant defined in Theorem 1.

We assume this result as true and proceed to proving Proposition 12.

Proof of Proposition 12. Let x,X,Y,M be as in the statement of Proposition
12. Using the class number formula, we write

∑

X<p≤X+Y

∑

|r|≤2√X

p+1−r prime

pH
(
r2−4p

)

=
1
2π

∑

|r|≤2√X

f≤2√X+Y

1
f

∑

X<p≤X+Y

∗
p
√
4p− r2L(1,χd

)
,

(24)

where

d= d(r,p,f) :=
r2−4p
f 2

and the ∗ on the summation over p indicates that we are summing over primes
X < p≤X+Y such that

p+1− r prime, f 2 | r2−4p, and d≡ 0,1 (mod4).

Here, χd denotes the Kronecker symbol of discriminant d (see for example [Hu,
Section 12.3]), and L(s,χd) denotes its Dirichlet L-function.
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Using the Pólya-Vinogradov inequality, we write the special value L(1,χd) as

L
(
1,χd

)
=
∑

n≤U

χd(n)

n
+
∑

n>U

χd(n)

n
=
∑

n≤U

χd(n)

n
+O

(√|d| log |d|
U

)

,

where U = U(x,M) is a parameter to be chosen soon. By using the above in (24),
we obtain that

∑

X<p≤X+Y

∑

|r|≤2√X

p+1−r prime

pH
(
r2−4p

)

=
1
2π

∑

|r|≤2√X

f≤2√X+Y
n≤U

1
nf

∑

X<p≤X+Y

∗
p
√
4p− r2χd(n)+O

(
X

1
2Y 3 logY
U

)

.
(25)

Thus, by taking

x
1
2 logM+1x≤ U ≤ x,(26)

the O-term above becomes O
(

x3

logM x

)
.

Now we change the weights of the sum on the right-hand side of (25) from
p
√
4p− r2 to

X
√
4X− r2

log2 (X+Y )
logp · log(p+1− r).

Since p=X+O(Y ), we have that

p
√
4p− r2 = X

√
4X− r2

log2 (X+Y )
logp · log(p+1− r)+O

(

Y
√
X+

XY
√
4p− r2

)

.

Then the right-hand side of (25) becomes

X

2π log2 (X+Y )

∑

|r|≤2√X

f≤2√X+Y

n≤U

√
4X− r2
nf

∑

X<p≤X+Y

∗
logp · log(p+1− r)χd(n)

+O

⎛

⎜
⎜
⎜
⎝

∑

f≤2√X+Y

n≤U

1
nf

∑

|r|≤2√X

X<p≤X+Y

XY
√
4p− r2

⎞

⎟
⎟
⎟
⎠
+O
(

XY 2 log2x+
x3

logM x

)

.

(27)
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For the first error term of (27), we remark that, by the conditions on p and r,
we have 4p− r2 ≥ 1. Thus, for any p, the innermost sum satisfies

∑

|r|≤2√X

1
√
4p− r2 ≤ 2+2

∫ 2
√
X

0

dr
√
4p− r2 ≤ 2+π,

which gives a bound ofXY 2 log2x for the first error term of (27). Then

∑

X<p≤X+Y

∑

|r|≤2√X

p+1−r prime

pH
(
r2−4p

)

=
X

2π log2 (X+Y )

∑

|r|≤2√X

f≤2√X+Y
n≤U

√
4X− r2
nf

∑

X<p≤X+Y

∗
logp · log(p+1− r)χd(n)

+O
(
XY 2 log2x

)
+O
(

x3

logM x

)

.

We now truncate the sum over f with respect to a parameter V = V (x,M), to
be chosen soon. We write

X

2π log2(X+Y )

∑

|r|≤2√X

f≤2√X+Y

n≤U

√
4X− r2
nf

∑

X<p≤X+Y

∗
logp · log(p+1− r)χd(n)

=
X

2π log2(X+Y )

∑

|r|≤2√X

f≤V

n≤U

√
4X− r2
nf

∑

X<p≤X+Y

∗
logp · log(p+1− r)χd(n)

+O

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X
3
2

∑

|r|≤2√X

V <f≤2√X+Y

n≤U

1
nf

∑

X<p≤X+Y

p≡ r2
4 (modf2)

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(28)

For the error term we used that, since r is odd and f 2|r2− 4p, we must have that
f is odd; hence the condition in the sum over p that 4p ≡ r2(modf 2) becomes
p≡ 4̄r2(modf 2). Here, 4̄ is the inverse of 4 modulo f 2.
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It is easy to see that the error term in (28) reduces to

O
(
X2Y logU

V 2

)

.

Choosing V such that

V ≥ (logx)
M+1
2 ,(29)

the error term becomes O
(

x3

logM x

)
.

Thus we have shown that
∑

X<p≤X+Y

∑

|r|≤2√X

p+1−r prime

pH
(
r2−4p

)

=
X

2π log2 (X+Y )

∑

|r|≤2√X

f≤V

n≤U

√
4X− r2
nf

∑

X<p≤X+Y

∗
logp · log(p+1− r)χd(n)

+O
(
XY 2 log2x

)
+O
(

x3

logM x

)

,

(30)

provided conditions (26) and (29) hold.
Now we use quadratic reciprocity and consider χd(n) as a character modulo

4n. In other words, we rewrite the main term of (30) as

X

2π log2(X+Y )

∑

|r|≤2√X

f≤V

n≤U

1
nf

√
4X− r2

×
∑

a(mod4n)

(
a

n

)
∑

X<p≤X+Y

∗∗
logp · log(p+1− r),

(31)

where the ∗∗ on the summation over p indicates that we are summing over primes
X < p≤X+Y such that

p+1− r prime, f 2 | r2−4p, d≡ 0,1 (mod4), and
r2−4p
f 2

≡ a (mod4n).

Since r and f must be odd, we necessarily have d≡ 1 (mod4); thus ∗∗ is equivalent
to the conditions

p+1− r prime and p≡ r2−af 2
4

(
modnf 2

)
.
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Consequently, we have reduced our question to an average of the standard twin
prime conjecture, twisted by some Kronecker symbols. This average is evaluated
using Proposition 13 stated in the beginning of the section; the details follow.

Let us write the left-hand side of Proposition 13 as
∑

|r|≤RF (r). With this
notation, (31) becomes

X

2π log2(X+Y )

∑

|r|≤2√X

F (r)
√
4X− r2,

which we can compute from Proposition 13 by partial summation. Evaluating the
integral

∫ 2
√
X

0
t2
(
4X− t2)− 1

2 dt= 4X
∫ 1

0
t2
(
1− t2)− 1

2 dt= πX

and letting

U := x
1
2 logM+3x, V := logM+3x,

we obtain:

X

2π log2(X+Y )

∑

|r|≤2√X

F (r)
√
4X− r2

=
X

2π log2(X+Y )

∫ 2
√
X

0

(

2CtY +O
(

tx

logM x
+x

4
3+ε

))(

t(4X− t2)− 1
2

)

dt

=
C

π
· XY

log2(X+Y )

∫ 2
√
X

0
t2
(
4X− t2)− 1

2 dt+O

(
(Xx)

3
2

(
log2(X+Y )

)(
logM x

)

)

=
CX2Y

log2 (X+Y )
+O

(
(Xx)

3
2

(
log2(X+Y )

)(
logM x

)

)

.

Combining this with (30), the proof of Proposition 12 is now completed (provided
that Proposition 13 holds). Proposition 13 will be proved in Sections 6 and 7, which
contain the main novel contributions of our paper. �

6. Average of the twin prime conjecture and proof of Theorem 4. In
this section we shall prove Theorem 4. The statement is a Barban-Davenport-
Halberstam type distribution result for twin primes, where the average is over the
twin prime differences. The main (and difficult) part of the proof is the case Q= 1
of Theorem 4. A version of this was proven by Perelli and Pintz in [PePi]. Beside
minor cosmetics, their result differs from what we need in two aspects: (i) rather
than a Goldbach type problem, we have a twin prime problem; (ii) more impor-
tantly, our result requires a Siegel-Walfisz type analogue, namely:
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PROPOSITION 14. Let ε,M,N > 0 be fixed. Then there exists x(ε,M,N)> 0
such that, for any x > x(ε,M,N), x 1

3+ε ≤ R ≤ x, q ≤ logN x, (a,q) = 1, and
2≤X+Y ≤ x, we have

∑

0<r≤R

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

X<p≤X+Y

p≡a (modq)
p−p′=r

logp · logp′ −S(r,q,a)Y

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

� Rx2

logM x
.

The proof of Proposition 14 is similar to the proof of [PePi, Theorem 1] and,
for this reason, we will only indicate the major steps; this will enable the interested
reader to modify [PePi] accordingly. After we complete the proof of Proposition 14,
we proceed to proving Theorem 4.

Proof of Proposition 14. We use the following notation (which is, unfortu-
nately, not exactly the same as the one in [PePi], since our S1(α) should reflect the
extra conditions on the running variable p):

S1(α) :=
∑

X<p≤X+Y
p≡a (modq)

logp · e(pα), S2(α) :=
∑

p≤x

logp · e(pα), e(y) := e2πiy,

C := C(ε,M,N), Is,b := the Farey arc around
b

s
=

{
b

s
+η : |η|< log2C x

sx

}

,

M :=
⋃

s≤logC x

⋃

(b,s)=1

Is,b, m := [0,1]\M.

By the circle method, we have

∑

X<p≤X+Y

p≡a (modq)
p−p′=r

logp · logp′ =
∫ 1

0
S1(α)S2(−α)e(−rα)dα,

and so

∑

0<r≤R

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

X<p≤X+Y

p≡a (modq)
p−p′=r

logp · logp′ −S(r,q,a)Y

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2
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�
∑

0<r≤R

∣
∣
∣
∣

∫

m
S1(α)S2(−α)e(−rα)dα

∣
∣
∣
∣

2

+
∑

0<r≤R

∣
∣
∣
∣

∫

M
S1(α)S2(−α)e(−rα)dα−S(r,q,a)Y

∣
∣
∣
∣

2
.(32)

The estimate for the contribution of the minor arcs (the first term in formula
(32)) is identical to the one in [PePi]. To start, we remark that the Cauchy-Schwarz
inequality and the well-known estimate

∑
0<r≤R e(ry) � min(R,1/‖y‖) reduce

this term to

∑

0<r≤R

∣
∣
∣
∣

∫

m
S1(α)S2(−α)e(−rα)dα

∣
∣
∣
∣

2

=
∑

0<r≤R

∫

m
S1(α)S2(−α)e(−rα)dα

∫

m
S1(β)S2(−β)e(rβ)dβ

�
∫

m
|S1(β)S2(β)|

∫

m
|S1(α)S2(α)|min

(

R,
1

‖α−β‖
)

dαdβ

� sup
β∈m

(∫

m

∣
∣S2(α)

∣
∣2min

(

R,
1

‖α−β‖
)2
dα

) 1
2

×
(∫

m

∣
∣S1(α)

∣
∣2dα

) 1
2
(∫

m

∣
∣S1(β)

∣
∣2dβ

) 1
2
(∫

m

∣
∣S2(β)

∣
∣2dβ

) 1
2

,

where ‖ · ‖ denotes the distance to the nearest integer. Now let us observe that our
S2(α) is essentially the same as the one in [PePi], thus the third integral above can
be estimated as in [PePi, Section 5]. Note that the function S2(α) plays the crucial
role, while the somewhat different S1(α) only appears in Parseval’s identity. Since
our S1(α) has smaller L2-norm than its analogue in [PePi], the arguments in [PePi,
Section 3] provide the necessary bound in our case as well.

For the calculation of the major arcs (the second term in (32)) we follow the
exact steps of [PePi, Section 4]. First, for α = b

s + η ∈ Is,b, we use the Siegel-
Walfisz theorem to approximate the function

S1(α) =
∑

X<p≤X+Y

p≡a (modq)

logp · e
(

p

(
b

s
+η

))

=
∑

1≤c≤s

e

(
bc

s

)
∑

X<p≤X+Y

p≡a (modq)
p≡c (mods)

logp · e(pη)
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by

1
φ
(
[q,s]

)
∑

1≤c≤s

(c,s)=1
(q,s)|c−a

e

(
bc

s

)
∑

X<n≤X+Y

e(nη),

and the function S2(α) by

1
φ(s)

∑

1≤c≤s
(c,s)=1

e

(
bc

s

)∑

n≤x

e(nη) =
μ(s)

φ(s)

∑

n≤x

e(nη).

Here, μ(·) denotes the Möbius function.
The estimates for the error terms in our resulting analogue of [PePi, (7)] are

identical to the ones described in [PePi, Section 4]. For the main term, the only
difference is in the singular series, which now originates in

∑

s≤logC x

μ(s)

φ(s)φ
(
[s,q]

)
∑

1≤b≤s

(b,s)=1

e

(−rb
s

)
∑

1≤c≤s

(c,s)=1
(q,s)|c−a

e

(
bc

s

)

.(33)

We proceed as follows. The standard argument via the Chinese Remainder
Theorem shows that the function

F (s;r;q,a) :=
∑

1≤b≤s

(b,s)=1

e

(−rb
s

)
∑

1≤c≤s

(c,s)=1
(q,s)|c−a

e

(
bc

s

)

is multiplicative in s. Indeed, for s = uv, (u,v) = 1, uu ≡ 1 (modv) and vv ≡
1 (modu), we note that the relation c= guu+hvv establishes a bijection between
the reduced residue classes c modulo uv and the pairs of reduced residue classes g
modulo v, h modulo u. Similarly, the relation b = du+ fv establishes a bijection
between the reduced residue classes b modulo uv and the pairs of reduced residue
classes d modulo v, f modulo u. Thus

e

(
bc− rb
s

)

= e

(
(du+ fv)(guu+hvv)− r(du+ fv)

uv

)

= e

(
dg− rd
v

)

e

(
fh− rf

u

)

.

Moreover, (q,uv) | c−a if and only if (q,u) | h−a and (q,v) | g−a.
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Observe that we are only interested in square-free s, thus it is enough to know
F (p;r;q;a) for a prime p. A routine computation shows that

F (p;r;q,a) =
∑

1≤b≤p−1

∑

1≤c≤p−1
(q,p)|c−a

e

(
bc− br
p

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p−1 if p | q, p | a− r,
−1 if p | q, p � a− r,
−p+1 if p � q, p | r,
1 if p � q, p � r.

Now one can easily check that, after extending the sum over s in (33) up to
infinity, we have

1
φ(q)

∑

s≥1

μ(s)

φ(s)
· φ(q)

φ
(
[s,q]

) F (s;r;q,a) =
1

φ(q)

∏

p

(

1− φ(q)F (p;r;q,a)
(p−1)φ

(
[p,q]

)

)

=S(r,q,a).

Proposition 14 then follows. �

Proof of Theorem 4. Let us observe that the expected density of twin primes
of distance r is S(r). If a(modq) is an admissible residue class, that is, (a,q) =
(a− r,q) = 1, then the expected density of twin primes of distance r in the residue
class a(modq) should satisfy

S(r,q,a) =
S(r)

ρ(r,q)
,

where

ρ(r,q) := #
{
a(modq) : (a,q) = (a− r,q) = 1

}
.

To see this, let us evaluate ρ(r,q). On one hand, we have that this function is
multiplicative in the second variable q. Indeed, let q = uv with (u,v) = 1 and note
that by the Chinese Remainder theorem, the relation b = cuu+ dvv establishes a
bijection between the reduced residue classes bmodulo uv and the pairs of reduced
residue classes c modulo v, d modulo u. Here, uu≡ 1(modv) and vv ≡ 1(modu).
The multiplicativity then follows from the fact that (b− r,uv) = 1 if and only if
(c− r,v) = (d− r,u) = 1. On the other hand, we have that

ρ
(
r,pα

)
=
∑

1≤b≤pα

p�b

p�b−r

1=

{
pα−pα−1 if p | r,
pα−2pα−1 if p � r.
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Then our claim follows from the equations

ρ(r,q) =
∏

pα‖q, p|r

(
pα−pα−1) ·

∏

pα‖q, p�r

(
pα−2pα−1

)
= φ(q)

∏

p|q, p�r

p−2
p−1

,

S(r)

ρ(r,q)
=

S(r)

φ(q)

∏

p|q, p�r

p−1
p−2

=
2

φ(q)

∏

p �=2

p(p−2)
(p−1)2

·
∏

p|r

p−1
p−2

·
∏

p|q, p�r

p−1
p−2

=S(r,q,a).

(34)

Now let us extend the definition of ρ(r,q) to characters modulo q: if χ is any
character modulo q, let

ρ(r,χ) :=
∑

1≤b≤q

(b−r,q)=1

χ(b) =
∑

1≤b≤q

χ(b)χ0(b− r).

Note that ρ(r,χ0) = ρ(r,q) when χ0 is the trivial character modulo q.
By the orthogonality of characters, we obtain that

S(r,q,a) =
S(r)

ρ(r,q)
=

S(r)

φ(q)

∑

χ

χ(a)
ρ(r,χ)

ρ(r,q)
,(35)

where this formula also incorporates all the conditions that 2 | r and (a,q) =

(a−r,q) = 1. This simple representation plays a crucial role in the following com-
putation.

Let ε,M > 0, N ≥M + 3, x > x(ε,M), x
1
3+ε ≤ R ≤ x, Q ≤ x log−N x, and

0≤X <X+Y ≤ x be fixed, as in the statement of Theorem 4.
For any (even) integer r and character χ, we define

F (r,χ) :=
∑

X<p≤X+Y
p−p′=r

χ(p) logp · logp′.

By the orthogonality of characters we obtain that

∑

X<p≤X+Y

p≡a (modq)
p−p′=r

logp · logp′ = 1
φ(q)

∑

χ

χ(a)F (r,χ).

Usually, the main term comes from the trivial character and the contribution of
the rest is small due to the oscillation of the characters. Unfortunately, our situation
above is more complex and we need to compute a dispersion over all characters,
as follows.
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The left-hand side of Theorem 4 can be transformed (using (35) and orthogo-
nality) into:

S :=
∑

0<r≤R

∑

q≤Q

∑

1≤a≤q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

X<p≤X+Y
p≡a (modq)
p−p′=r

logp · logp′ −S(r,q,a)Y

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

=
∑

0<r≤R

∑

q≤Q

∑

1≤a≤q

∣
∣
∣
∣
∣

1
φ(q)

∑

χ

χ(a)

(

F (r,χ)− S(r)ρ(r,χ)Y

ρ(r,q)

)∣∣
∣
∣
∣

2

=
∑

0<r≤R

∑

q≤Q

1
φ(q)

∑

χ

∣
∣
∣
∣F (r,χ)−

S(r)ρ(r,χ)Y

ρ(r,q)

∣
∣
∣
∣

2

=
∑

0<r≤R

∑

q≤Q

1
φ(q)

∑

χ

∣
∣F (r,χ)

∣
∣2

−
∑

0<r≤R

∑

q≤Q

1
φ(q)

∑

χ

S(r)Y

ρ(r,q)
2ℜ
(
F (r,χ)ρ(r,χ)

)

+
∑

0<r≤R

∑

q≤Q

1
φ(q)

∑

χ

S(r)2
∣
∣ρ(r,χ)

∣
∣2Y 2

ρ(r,q)2
.

By the orthogonality of characters,

1
φ(q)

∑

χ

∣
∣ρ(r,χ)

∣
∣2 =

∑

1≤b≤q

(b−r,q)=1

∑

1≤c≤q

(c−r,q)=1

1
φ(q)

∑

χ

χ(b)χ(c) = ρ(r,q),

and then the last term in S simplifies to

∑

0<r≤R

∑

q≤Q

1
φ(q)

∑

χ

S(r)2
∣
∣ρ(r,χ)

∣
∣2Y 2

ρ(r,q)2
= Y 2

∑

0<r≤R

∑

q≤Q

S(r)2

ρ(r,q)
.

More importantly,

1
φ(q)

∑

χ

F (r,χ)ρ(r,χ) =
∑

X<p≤X+Y

p−p′=r

∑

1≤b≤q

(b−r,q)=1

logp · logp′ 1
φ(q)

∑

χ

χ(p)χ(b)

=
∑

X<p≤X+Y

p−p′=r

(pp′,q)=1

logp · logp′ =
∑

X<p≤X+Y

p−p′=r

logp · logp′+O(log2x).
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The expected asymptotic for this last sum is S(r)Y , which is indeed true on aver-
age over r from the case of a= q = 1 of Proposition 14.

We remark that, if r and q are even, then S(rq)� S(r)S(q). Moreover, by
using standards methods to estimate the average of a multiplicative function having
a value of 1+O

( 1
p

)
at any p prime power (see, for example, [Te]), we obtain that

S(r) is bounded on average, that is,
∑

r≤R

S(r) = O(R)

and
∑

r≤R

S(r)2 = O(R).

Using these remarks, we deduce that

∑

0<r≤R

∑

q≤Q

1
φ(q)

∑

χ

S(r)Y

ρ(r,q)
2ℜ
(
F (r,χ)ρ(r,χ)

)

= 2
∑

0<r≤R

∑

q≤Q

S(r)Y

ρ(r,q)

(
S(r)Y +O

(
log2x

))
+O
(

Rx2

logM x

)

= 2Y 2
∑

0<r≤R

∑

q≤Q

S(r)2

ρ(r,q)
+O
(

Rx2

logM x

)

.

Putting everything together, we obtain that

S =
∑

0<r≤R

∑

q≤Q

1
φ(q)

∑

χ

∣
∣F (r,χ)

∣
∣2−Y 2

∑

0<r≤R

∑

q≤Q

S(r)2

ρ(r,q)
+O
(

Rx2

logM x

)

.

Note that nothing deep has happened so far beside the one application of
Proposition 14 – we have utilized only the basic properties of Dirichlet charac-
ters. Now we need to show that the first and the second terms are asymptotically
equal, that is, we need to be exact in our computation.

As a first step we define

C(f,Q) :=
∑

q≤Q
f |q

1
φ(q)

,(36)

which satisfies

C(f,Q)� 1
φ(f)

logQ.(37)
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We also observe that, if χ(modq) is induced by the primitive character χ∗(modf),
then, due to the fact that F (r,χ) is a sum over primes, we have

F (r,χ) = F
(
r,χ∗)+O

(
log2x

)
.

By rearranging the first sum in S according to primitive characters and using the
above, we see that

S =
∑

0<r≤R

∑

f≤Q

C(f,Q)
∑

χ

∗∣
∣F (r,χ)

∣
∣2−Y 2

∑

0<r≤R

∑

q≤Q

S(r)2

ρ(r,q)
+O
(

Rx2

logM x

)

,

where
∑∗

χ is a sum over all primitive characters modulo f .
Now for any fixed (even) 0 < r ≤ R, we use the large sieve inequality to esti-

mate

∑

Q0<f≤Q

C(f,Q)
∑

χ

∗∣
∣F (r,χ)

∣
∣2 �

(
Y

Q0
+Q

)

Y log3x� x2

logM x
,

where Q0 := logM+3x and (recall) N ≥M +3. This implies that

S =
∑

0<r≤R

∑

f≤Q0

C(f,Q)
∑

χ

∗∣
∣F (r,χ)

∣
∣2−Y 2

∑

0<r≤R

∑

q≤Q

S(r)2

ρ(r,q)
+O
(

Rx2

logM x

)

.

Using the notation

ψ(X,Y ;r,f,b) :=
∑

X<p≤X+Y

p≡b (modf)
p−p′=r

logp · logp′,(38)

E(X,Y ;r,f,b) := ψ(X,Y ;r,f,b)−S(r,f,b)Y,(39)

we see that

F (r,χ) =
∑

1≤b≤f

χ(b)ψ(X,Y ;r,f,b)

=
∑

1≤b≤f

(b−r,f)=1

χ(b)S(r,f,b)Y +
∑

1≤b≤f

χ(b)E(X,Y ;r,f,b)

=
S(r)Y

ρ(r,f)
ρ(r,χ)+O

(

f max
(b,f)=1

∣
∣E(X,Y ;r,f,b)

∣
∣

)

.

For any small f and b, the sum of |E(X,Y ;r,f,b)| over r is sufficiently small
by Proposition 14; consequently, the same is also true for the sum over f .
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Additionally, we can evaluate ρ(r,χ) for a primitive character. It is well-
known that for a primitive character χ modulo f and for all d|f , d �= f , we have
∑

1≤c≤f/dχ(r+ cd) = 0 (see [Da, Chapter 9]). Using this, we quickly infer that

ρ(r,χ) =
∑

1≤b≤f

χ(b)
∑

d|(b−r,f)

μ(d) =
∑

d|f
μ(d)

∑

1≤b≤f
b≡r (modd)

χ(b) = μ(f)χ(r).

Putting everything together, we arrive at the equation

S =
∑

0<r≤R

∑

f≤Q0
(r,f)=1

f is square-free

C(f,Q)
S(r)2Y 2

ρ(r,f)2

∑

χ

∗
1

−Y 2
∑

0<r≤R

∑

q≤Q

S(r)2

ρ(r,q)
+O
(

Rx2

logM x

)

.

Let us denote the number of primitive characters modulo f by φ∗(f). We note
that this is a multiplicative function for which φ∗(p) = p−2. The sum over f is a
quickly converging sum by (34) and (37), so we can drop the condition f ≤Q0 for
a price already paid by the error term. Writing back the definition of C(f,Q), we
obtain, after a little rearrangement, that

S = Y 2
∑

0<r≤R

S(r)2
∑

q≤Q

1
φ(q)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

f |q
(r,f)=1

f is square-free

φ∗(f)
ρ(r,f)2

− φ(q)

ρ(r,q)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+O
(

Rx2

logM x

)

.

Finally, let us notice that by (34) we actually have 0 inside the big parentheses, as
everything is multiplicative and

∑

f |q
(r,f)=1

f is square-free

φ∗(f)
ρ(r,f)2

=
∏

p|q
p�r

(

1+
φ∗(p)
ρ(r,p)2

)

=
∏

p|q
p�r

(

1+
1

p−2

)

=
φ(q)

ρ(r,q)
.

This completes the proof of Theorem 4. �

7. Proof of Proposition 13. This section consists of a proof of Proposi-
tion 13. This is done in two parts: an estimate of the error term in Proposition 13,
which relies on Theorem 4, and an estimate of the main term, which consists
mainly of the computation of the constant C. Note that in the course of proving
Proposition 13 we can always assume R ≥ x

1
3+ε and Y ≥ √

X, as otherwise the
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error term is an obvious upper bound for all the other terms in (23). Note also that
the term r = 1 behaves differently, as p+1− r is always prime in this case. How-
ever, any trivial bound (obtained by dropping the primality of p and by bounding
the character by 1) shows that this term is much smaller than the error term in
Proposition 13; therefore, it can comfortably be excluded from any further investi-
gation.

Note that, using notation (39), Theorem 4 can be formulated as

∑

0<|r|≤R

∑

q≤Q

∑

a (modq)

∣
∣E(X,Y ;r,q,a)

∣
∣2 � Rx2

logM x
,

whenever x
1
3+ε ≤R≤ x, Q≤ x log−N x, and X+Y ≤ x.

Using the same notation, as well as (38), we rewrite the left-hand side of (23)
as

∑

|r|≤R, r �=1
f≤V

n≤U

1
nf

∑

a (mod4n)

(
a

n

)

ψ

(

X,Y ;r−1,nf 2,
r2−af 2

4

)

(40)

= Y
∑

|r|≤R, r �=1
f≤V

n≤U

1
nf

∑

a (mod4n)

(
a

n

)

S

(

r−1,nf 2,
r2−af 2

4

)

(41)

+
∑

|r|≤R, r �=1
f≤V

n≤U

1
nf

∑

a (mod4n)

(
a

n

)

E

(

X,Y ;r−1,nf 2,
r2−af 2

4

)

.(42)

7.1. Estimate of the error term in Proposition 13. In what follows, we
will show how Theorem 4 allows us to control the error term (42). First, using the
Cauchy-Schwarz inequality, we obtain

∑

|r|≤R, r �=1
f≤V

n≤U

1
nf

∑

a (mod4n)

(
a

n

)

E

(

X,Y ;r−1,nf 2,
r2−af 2

4

)

≤
∑

f≤V

1
f

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

|r|≤R

n≤U

a (mod4n)

1
n2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
2
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

|r|≤R, r �=1
n≤U

a (mod4n)

E2
(

X,Y ;r−1,nf 2,
r2−af 2

4

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
2

.

(43)
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The first inner sum above is estimated trivially as
⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

|r|≤R
n≤U

a (mod4n)

1
n2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1
2

�R
1
2 log

1
2 U.(44)

For the second inner sum we observe that
∑

|r|≤R, r �=1
n≤U

a (mod4n)

E2
(

X,Y ;r−1,nf 2,
r2−af 2

4

)

≤
∑

|r|≤R

r �=1

∑

q≤4Uf2

∑

b (modq)

E2(X,Y ;r−1,q,b),

as, for each fixed f,r,n, the residue classes
{

b=
r2−af 2

4
: a (mod4nf 2)

}

cover each residue class modulo 4nf 2 at most once. Then, using Theorem 4, we
obtain

∑

|r|≤R, r �=1
n≤U

a (mod4n)

E2
(

X,Y ;r−1,nf 2,
r2−af 2

4

)

� Rx2

logM x
(45)

for anyM > 0, provided that

4UV 2 ≤ x log−N x.(46)

Using the estimates (44) and (45) in (43), we finally obtain that

∑

|r|≤R, r �=1
f≤V

n≤U

1
nf

∑

a (mod4n)

(
a

n

)

E

(

X,Y ;r−1,nf 2,
r2−af 2

4

)

� Rx log
1
2 U

log
M
2 x

∑

f≤V

1
f
� Rx

log
M−3
2 x

(47)

for anyM > 0. This estimates the error term (42), and thus the error term of Propo-
sition 13 (after renamingM ).
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7.2. Computation of the constant in Proposition 13. We now treat the
main term (41) in (40), which is essentially a computation of the constant C in
Theorem 1. We first analyze the sum over n and f of (41) when r is a fixed integer.
We remark that the sum is zero if r is even, thus we can assume that r is odd. We
also take r �= 1.

Our goal in this section is to prove:

PROPOSITION 15. Let r �= 1 be an odd integer. Then

∑

f≤V
n≤U

1
nf

∑

a (mod4n)

(
a

n

)

S

(

r−1,nf 2,
r2−af 2

4

)

=Cr+O
(

1
V 2 +

1√
U

)

,

where Cr is the positive constant

Cr :=
∞∑

f=1

∞∑

n=1

1
nf

∑

a (mod4n)

(
a

n

)

S

(

r−1,nf 2,
r2−af 2

4

)

=
4
3
∏

� �=2

�2(�2−2�−2)
(�−1)3(�+1)

·
∏

�|(r−1)
� �=2

(

1+
�+1

�2−2�−2

)

·
∏

�|r(r−2)
� �=2

(

1+
1

�2−2�−2

)

.

Proof of Proposition 15. Using the definition of S(·, ·, ·), we rewrite the left-
hand side of the desired equation in Proposition 15 as

2

⎛

⎝
∏

� �=2

�(�−2)
(�−1)2

⎞

⎠
∑

f≤V

f odd

∑

n≤U

1
nfφ

(
nf 2
)

⎛

⎜
⎜
⎜
⎝

∏

�|nf2(r−1)
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠
crf (n),(48)

where

crf (n) :=
∑

a (mod4n)

′(a
n

)

and
∑′ indicates that the sum is taken over the invertible residues a modulo 4n

such that
(
r2−af 2

4
,nf 2

)

= 1 and
(
r2−af 2

4
− (r−1),nf 2

)

= 1

⇐⇒
(
r2−af 2,4nf 2)= 4 and

(
r2−af 2−4(r−1),4nf 2

)
= 4.
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As r,f are odd and (r,f) divides (r2−af 2,4nf 2), we must have that (r,f) =
1; in this case,

(
r2−af 2,4nf 2)= 4 ⇐⇒ (

r2−af 2,4n) = 4.

Similarly, as (r−2,f) divides (r2−af 2−4(r−1),nf 2) = ((r−2)2−af 2,nf 2),
we must have (r−2,f) = 1; in this case,

(
(r−2)2−af 2,4nf 2)= 4 ⇐⇒ (

(r−2)2−af 2,4n) = 4.

Thus

crf (n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

a (mod4n)∗

(r2−af2,4n)=4
((r−2)2−af2,4n)=4

(
a

n

)

if (r,f) = (r−2,f) = 1,

0 otherwise,

where a (mod4n)∗ denotes invertible residue classes a modulo 4n.
To continue the proof, we need some properties of the function crf (n):

LEMMA 16. Let r �= 1 be an odd integer and let f be a positive odd integer
such that (r,f) = (r− 2,f) = 1. Let crf (n) be as defined above. The following
statements hold:

(1) if n is odd, then

crf (n) =
∑

a (modn)∗

(r2−af2,n)=1
((r−2)2−af2,n)=1

(a

n

)
,

where a (modn)∗ denotes invertible residue classes a modulo n;
(2) crf (n) is a multiplicative function of n;
(3) if � is an odd prime and (�,f) = 1, then

crf
(
�α
)

�α−1
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�−2 if α is even and � | r(r−2)(r−1),
�−3 if α is even and � � r(r−2)(r−1),
−1 if α is odd and � | r(r−2)(r−1),
−2 if α is odd and � � r(r−2)(r−1);

(4) if � is an odd prime and � | f (which implies that (�,r) = (�,r−2) = 1 by
the hypotheses on f ), then

crf (�
α)

�α−1
=

{
0 if α is odd,
�−1 if α is even;
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(5)
crf (2

α)

2α−1 = (−1)α.
Proof. (1) If n is odd, then

crf (n) =
∑

a (mod4n)∗, a≡1 (mod4)
(r2−af2,n)=1

((r−2)2−af2,n)=1

(a

n

)
=

∑

a (modn)∗

(r2−af2,n)=1
((r−2)2−af2,n)=1

(a

n

)
,

where the last equality follows from the Chinese Remainder theorem and the fact
that
(
a1
n

)
=
(
a2
n

)
when a1 ≡ a2 (modn) for n odd.

(2) Let n1,n2 be two co-prime positive integers with n1 odd, and let n= n1n2.
Then, using the Chinese Remainder theorem, we obtain

crf
(
n1
)
crf
(
n2
)
=

∑

a1 (modn1)∗

(r2−a1f
2,n1)=1

((r−2)2−a1f
2,n1)=1

(
a1
n1

)

×
∑

a2 (mod4n2)∗

(r2−a2f
2,4n2)=4

((r−2)2−a2f
2,4n2)=4

(
a2
n2

)

=
∑

a (mod4n1n2)∗

(r2−af2,4n1n2)=4
((r−2)2−af2,4n1n2)=4

(
a

n1

)(
a

n2

)

= crf
(
n1n2

)
.

(3) We have that

crf
(
�α
)
= �α−1

∑

a(mod�)∗

(r2−af2,�)=1
((r−2)2−af2,�)=1

(a

�

)α

= �α−1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

a (mod�)∗

(a

�

)α−
∑

a (mod�)∗

a≡f̄−2r2 (mod�) or
a≡f̄−2(r−2)2 (mod�)

(a

�

)α

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(49)

where f̄ denotes the inverse of f modulo �. We then need to count the number of
invertible residues a modulo � which are eliminated by the two congruence con-
ditions of the second sum. If r ≡ 0,1,2 (mod4), there is exactly one such residue
(notice that r2 ≡ (r−2)2 (mod�)⇔ r ≡ 1 (mod�)). In all three cases, this residue
is an invertible square modulo �, and the second sum on the right-hand side of (49)
has value +1. The result follows immediately when α is even, and follows from
the orthogonality relations when α is odd. If r �≡ 0,1,2 (mod�), there are two in-
vertible residues which are eliminated by the two congruence conditions on a, and



AVERAGE TWIN PRIME CONJECTURE FOR ELLIPTIC CURVES 1221

the second sum on the right-hand side of (49) has value +2. The result follows as
above.

(4) We have that

crf
(
�α
)
= �α−1

∑

a (mod�)∗
(r2−af2,�)=1

((r−2)2−af2,�)=1

(a

�

)α
= �α−1

∑

a (mod�)∗

(a

�

)α

since (r2 − af 2, �) = ((r− 2)2 − af 2, �) = 1 for all a when � | f and (r,f) =

(r− 2,f) = 1. The result follows immediately when α is even, and using the or-
thogonality relations when α is odd.

(5) Let α≥ 1. Since
(
a
2
)
is a character modulo 8, we write

crf
(
2α
)
= 2α−1

∑

a (mod8)∗

(r2−af2,2α+2)=4
((r−2)2−af2,2α+2)=4

(a

2

)α
= 2α−1

(
5
2

)α

= 2α−1(−1)α.

�

Using parts (3) and (4) of Lemma 16, we write

∑

f≤V

f odd

∑

n≤U

1
nfφ

(
nf 2
)

⎛

⎜
⎜
⎜
⎝

∏

�|nf2(r−1)
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠
crf (n)

=
∞∑

f=1
(2,f)=(r,f)=(r−2,f)=1

∞∑

n=1

1
nfφ

(
nf 2
)

⎛

⎜
⎜
⎜
⎝

∏

�|nf2(r−1)
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠
crf (n)+O

(
1
V 2+

1√
U

)

=:Dr+O
(
1
V 2 +

1√
U

)

.

Note that

Cr = 2
∏

� �=2

�(�−2)
(�−1)2

Dr.

The rest of this section consists of writing Dr as an Euler product. We first
write the sum over n as a product. In order to have multiplicative functions of n,
we use the formulas

φ
(
nf 2
)
=
φ(n)φ

(
f 2
)(
n,f 2

)

φ
((
n,f 2

)) ,
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∏

�|nf2(r−1)
� �=2

�−1
�−2

=

⎛

⎜
⎜
⎜
⎝

∏

�|n
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

∏

�|f2(r−1)
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

∏

�|(n,f2(r−1))
� �=2

�−2
�−1

⎞

⎟
⎟
⎟
⎠
.

Now we rewrite Dr as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

f≥1
f odd

(r,f)=(r−2,f)=1

1
fφ
(
f 2
)
∏

�|f2(r−1)
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∑

n≥1

crf (n)

nφ(n)

φ
((
f 2,n

))

(
f 2,n

)

×

⎛

⎜
⎜
⎜
⎝

∏

�|n
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

∏

�|(n,f2(r−1))
� �=2

�−2
�−1

⎞

⎟
⎟
⎟
⎠
.

The sum over n is the sum of a multiplicative function of n whose factors at
prime powers �α depend on the divisibilities of f,r,r− 1 and r− 2 by �. Using
Lemma 16, we write the n-sum as

⎛

⎝
∏

�|f

∑

α≥0
ar
(
�α
)

⎞

⎠

⎛

⎝
∏

��f

∑

α≥0
br
(
�α
)

⎞

⎠=

(
∏

�

∑

α≥0
br
(
�α
)
)⎛

⎝
∏

�|f

∑
α≥0ar

(
�α
)

∑
α≥0 br

(
�α
)

⎞

⎠ ,

where ar(1) = br(1) = 1 and for � �= 2 and α≥ 1,

ar(�
α) =

{
0 if α odd,

(�−1)/(�α+1) if α even;

br(�
α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2/�α(�−2) if α odd and � � r(r−1)(r−2),

(�−3)/�α(�−2) if α even and � � r(r−1)(r−2),

−1/�α(�−2) if α odd and � | r(r−2),

1/�α if α even and � | r(r−2),

−1/�α(�−1) if α odd and � | r−1,

(�−2)/�α(�−1) if α even and � | r−1.
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Replacing in Dr, this gives

Dr =

(
∏

�

∑

α≥0
br
(
�α
)
)

∑

f≥1
f odd

(r,f)=(r−2,f)=1

1
fφ
(
f 2
)

⎛

⎜
⎜
⎜
⎝

∏

�|f2(r−1)
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠

⎛

⎝
∏

�|f

∑
α≥0ar

(
�α
)

∑
α≥0 br

(
�α
)

⎞

⎠

=

(
∏

�

∑

α≥0
br
(
�α
)
)

⎛

⎜
⎜
⎜
⎝

∏

�|(r−1)
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠

×
∑

f≥1
f odd

(r,f)=(r−2,f)=1

1
fφ
(
f 2
)

⎛

⎜
⎜
⎜
⎝

∏

�|f2
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

∏

�|(f2,r−1)
� �=2

�−2
�−1

⎞

⎟
⎟
⎟
⎠

⎛

⎝
∏

�|f

∑
α≥0ar

(
�α
)

∑
α≥0 br

(
�α
)

⎞

⎠ .

The sum over f in the last expression is a sum of multiplicative functions of f ,
which we write as

∏

��2r(r−2)

∑

α≥0
cr
(
�α
)
.

Here cr(1) = 1 and for any prime � with � � 2r(r−2) and any α≥ 1, we have

cr(�
α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
�3α−1(�−2)

·
∑

β≥0ar
(
�β
)

∑
β≥0 br

(
�β
) if � � r−1,

1
�3α−1(�−1)

·
∑

β≥0ar
(
�β
)

∑
β≥0 br

(
�β
) if � | r−1.

Then

Dr =

(
∏

�

∑

α≥0
br
(
�α
)
)
⎛

⎜
⎜
⎝

∏

�|(r−1)
� �=2

�−1
�−2

⎞

⎟
⎟
⎠

⎛

⎝
∏

��2r(r−2)

∑

α≥0
cr
(
�α
)

⎞

⎠ .(50)

We now compute the sums appearing in (50), using the formulas for ar(�) and
br(�) listed above:

LEMMA 17. Let � be an odd prime and α ≥ 1. Let ar(�α), br(�α) and cr(�α)
be as defined above. We have:
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(1) A(�) :=
∑

α≥0ar(�
α) = �2+�+1

�(�+1) ;

(2) if � � r(r−1)(r−2), then B(1)(�) :=
∑

α≥0 br(�
α) = �3−2�2−2�−1

(�−2)(�2−1) ;

(3) if � | r−1, then B(2)(�) :=
∑

α≥0 br(�
α) = �3−�2−�−1

(�−1)2(�+1) ;

(4) if � � r−1, but � | r(r−2), then B(3)(�) :=
∑

α≥0 br(�
α) = �(�2−2�−1)

(�−2)(�2−1) ;

(5) if � � 2r(r−2)(r−1), then C(1)(�) :=
∑

α≥0 cr(�
α) = �3−2�2−2�

�3−2�2−2�−1 ;

(6) if � | r−1, then C(2)(�) :=
∑

α≥0 cr(�
α) = �(�2−�−1)

�3−�2−�−1;

(7) if �= 2, then B(2) :=
∑

α≥0 br(�
α) = 2

3 .

Proof. All the computations are straightforward, following from the formula
for the sum of the geometric series. �

We extend the definitions of A(�), B(1)(�), B(2)(�), B(3)(�), C(1)(�), C(2)(�)

introduced in Lemma 17 to any odd prime � (independently of the relation between
� and r). Then we rewrite Dr as

Dr =B(2)

⎛

⎝
∏

� �=2

∑

α≥0
br
(
�α
)

⎞

⎠

⎛

⎜
⎜
⎜
⎝

∏

�|r−1
� �=2

�−1
�−2

⎞

⎟
⎟
⎟
⎠

⎛

⎝
∏

��2r(r−2)

∑

α≥0
cr
(
�α
)

⎞

⎠

=B(2)

⎛

⎝
∏

� �=2
B(1)(�)C(1)(�)

⎞

⎠

⎛

⎜
⎜
⎜
⎝

∏

�|r(r−2)
� �=2

B(1)(�)−1C(1)(�)−1B(3)(�)

⎞

⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎝

∏

�|r−1
� �=2

B(1)(�)−1C(1)(�)−1B(2)(�)
�−1
�−2

C(2)(�)

⎞

⎟
⎟
⎟
⎠
.

Using Lemma 17, we compute

B(1)(�)C(1)(�) =
�3−2�2−2�
�3−2�2− �+2

=
�(�2−2�−2)
(�−2)(�2−1)

,

B(1)(�)−1C(1)(�)−1B(3)(�) =
�2−2�−1
�2−2�−2

= 1+
1

�2−2�−2
,

B(1)(�)−1C(1)(�)−1B(2)(�)C(2)(�)
�−1
�−2

=
�2− �−1
�2−2�−2

= 1+
�+1

�2−2�−2
.



AVERAGE TWIN PRIME CONJECTURE FOR ELLIPTIC CURVES 1225

Finally, replacing all the above in (48), we obtain

Cr =
4
3

⎛

⎝
∏

� �=2

�(�−2)
(�−1)2

· �
(
�2−2�−2

)

(�−2)
(
�2−1

)

⎞

⎠

·
∏

�|r−1
� �=2

(

1+
�+1

�2−2�−2

)

·
∏

�|r(r−2)
� �=2

(

1+
1

�2−2�−2

)

=
4
3
∏

� �=2

�2
(
�2−2�−2

)

(�−1)3(�+1)
·
∏

�|(r−1)
� �=2

(

1+
�+1

�2−2�−2

)

·
∏

�|r(r−2)
� �=2

(

1+
1

�2−2�−2

)

.

This completes the proof of Proposition 15. �

7.3. The average constant. Using Proposition 15, the main term (41) of
(40) is Y

∑
|r|≤R, r �=1 oddCr; thus now we need to average the constant Cr over r.

This calculation has similarities with the one done by Gallagher in [Gal] for the
average of the standard twin prime constant. As such, we will follow the notation
used in [Gal].

The main result of this section is:

LEMMA 18. As R→ ∞,
∑

|r|≤R
r �=1 odd

Cr = 2CR+O
(
log2R

)
.

Proof. Let us write

Cr =
4
3
∏

� �=2

�2
(
�2−2�−2

)

(�−1)3(�+1)
·

∏

� �=2
�|r(r−1)(r−2)

(
1+ er(�)

)
,(51)

where

er(�) :=

⎧
⎪⎪⎨

⎪⎪⎩

e(1)(�) if � | r−1

e(2)(�) if � | r(r−2)

0 otherwise

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�+1
�2− �−2

if � | r−1,

1
�2−2�−2

if � | r(r−2),

0 otherwise.
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Let us also fix the following notation: for r �= 1 odd, we take

P(r) :=
{
� odd prime : � | r(r−1)(r−2)

}
,

F(r) :=
{
q positive square-free integer : � | q⇒ � ∈ P(r)

}
,

D(R) := ∪ |r|≤R

r �=1 odd
F(r).

We want to evaluate

S :=
∑

|r|≤R

r �=1 odd

∏

� �=2
�|r(r−1)(r−2)

(
1+ er(�)

)
=
∑

|r|≤R

r �=1 odd

∑

q∈F(r)

er(q),(52)

where er(1) = 1 and, for q �= 1, er(q) =
∏

�|q er(�). We write

S =
∑

q∈D(R)

∑

|r|≤R

r �=1 odd

er(q) =
∑

q∈D(R)

∑

all possible
e=e(q)

∑

|r|≤R

r �=1 odd
er(q)=e

er(q)

=
∑

q∈D(R)

∑

all possible
e=e(q)

#
{|r| ≤R : r �= 1 odd, er(q) = e

}

=
∑

q∈D(R)

∑

v=v(q)

∏

�|q
ev(�)(�)N(q,v),

where the sum
∑

v=v(q) is over all maps v : {� : � | q}→ {1,2} and where

N(q,v) := #
{|r| ≤R : r �= 1 odd, er(�) = ev(�)(�) ∀� | q}.

By looking at the conditions imposed on � when defining e(1)(�) and e(2)(�),
we see that N(q,v) is the number of integers |r| ≤R with r �= 1 odd such that

r ≡ 1 (mod2),

r ≡ 1 (mod�) ∀� | q with v(�) = 1,

r ≡ 0 or 2 (mod�) ∀� | q with v(�) = 2.

Therefore, by using the Chinese Remainder Theorem, r as above lies in one of
∏

�|q 2v(�)−1 distinct residue classes modulo 2q. Consequently,

N(q,v) =

⎛

⎝
∏

�|q
2v(�)−1

⎞

⎠

(
2R+1
2q

+O(1)
)

=
R

q

∏

�|q
2v(�)−1+O

(
2ω(q)

)
,
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where ω(q) denotes the number of distinct prime factors of q. We plug this in the
formula for S and obtain

S =R
∑

q∈D(R)

1
q

∑

v=v(q)

∏

�|q
ev(�)(�)2v(�)−1+O

⎛

⎝
∑

q∈D(R)

2ω(q)
∑

v=v(q)

∏

�|q
ev(�)(�)

⎞

⎠

=: Smain+Serror.

To estimate Smain, we observe that we have

Smain =R
∑

q∈D(R)

G(q)

for some multiplicative function G(q). Therefore

Smain =R
∏

�≤R
� �=2

(
1+G(�)

)
=R

∏

�≤R
� �=2

(

1+
e(1)(�)+2e(2)(�)

�

)

=R
∏

�≤R
� �=2

�3−2�2− �+3
�
(
�2−2�−2

) =R
∏

� �=2

�3−2�2− �+3
�
(
�2−2�−2

) +O(1).

Now let us estimate Serror. As for Smain, we observe that we have

Serror = O

⎛

⎝
∑

q∈D(R)

F (q)

⎞

⎠

for some multiplicative function F (q). Therefore

Serror = O

⎛

⎜
⎜
⎝

∏

�≤R
� �=2

[
1+2

(
e(1)(�)+ e(2)(�)

)]

⎞

⎟
⎟
⎠

= O

⎛

⎜
⎜
⎝

∏

�≤R
� �=2

(

1+
2
(
�2+ �−1

)

�
(
�2−2�−2

)

)

⎞

⎟
⎟
⎠= O

(
(logR)2

)
.

We put the two estimates together and obtain

S =R
∏

� �=2

�3−2�2− �+3
�
(
�2−2�−2

) +O
(
(logR)2

)
.
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By replacing (52) in (51), this gives

∑

|r|≤R
r �=1 odd

Cr =
4R
3
∏

� �=2

�2
(
�2−2�−2

)

(�−1)3(�+1)
· �

3−2�2− �+3
�
(
�2−2�−2

) +O
(
log2R

)

=
4R
3
∏

� �=2

�4−2�3− �2+3�
(�−1)3(�+1)

+O
(
log2R

)
,

which completes the proof of Lemma 18. �

Replacing Proposition 15 and Lemma 18 in (41), this concludes the proof of
Proposition 13. �
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1989), Progr. Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 47–75.

[BaSh] W. D. Banks and I. E. Shparlinski, Sato-Tate, cyclicity, and divisibility statistics on average for elliptic
curves of small height, Israel J. Math. 173 (2009), 253–277.

[Co] A. C. Cojocaru, Reductions of an elliptic curve with almost prime orders, Acta Arith. 119 (2005), no. 3,
265–289.

[Da] H. Davenport, Multiplicative Number Theory, 3rd ed., Graduate Texts in Mathematics, vol. 74,
Springer-Verlag, New York, 2000.



AVERAGE TWIN PRIME CONJECTURE FOR ELLIPTIC CURVES 1229

[DaPa1] C. David and F. Pappalardi, Average Frobenius distributions of elliptic curves, Internat. Math. Res.
Notices (1999), no. 4, 165–183.

[DaPa2] , Average Frobenius distribution for inerts in Q(i), J. Ramanujan Math. Soc. 19 (2004),
no. 3, 181–201.

[DaWu] C. David and J. Wu, Almost prime values of the order of elliptic curves over finite fields, Forum
Mathematicum (to appear).

[De] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Han-
sischen Univ. 14 (1941), 197–272.

[FoMu] E. Fouvry and M. R. Murty, On the distribution of supersingular primes, Canad. J. Math. 48 (1996),
no. 1, 81–104.

[FrIw] J. B. Friedlander and H. Iwaniec, The divisor problem for arithmetic progressions, Acta Arith. 45
(1985), no. 3, 273–277.

[Gal] P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), no. 1, 4–9.
[HaLi] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a

number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70.
[Hu] L. K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, 1982.
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