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1. Introduction

This is largely a survey paper in which we discuss new and old problems about
the reductions Ep modulo primes p of a fixed elliptic curve E defined over the field
of rational numbers. We investigate, in particular, how the “noncyclic” part of the
group of points of Ep is distributed, thus making progress toward a conjecture of
R. Takeuchi. The new result is Theorem 2 of Section 3.

Many interesting questions that resemble classical problems in number the-
ory, such as Artin’s primitive root conjecture, the twin prime conjecture, the
Buniakowski–Schinzel hypothesis, can be formulated using the group of points of
the reduction modulo a prime of a fixed elliptic curve defined over a global field, say
over Q. Before discussing these questions in detail, let us recall the basic definitions
and properties of elliptic curves. For precise references or more detailed facts, the
reader is referred to [33,34].

An elliptic curve E defined over Q is the locus of an equation of the form

(1.1) E : y2 = x3 + ax + b

(where a, b ∈ Z are such that the discriminant −16(4a3+27b2) is nonzero), together
with a point at infinity O, given in projective coordinates by [0:1:0].

When doing arithmetic over E we are usually concerned with rational solutions
of (1.1) or solutions of congruences modulo primes defined by (1.1). We will briefly
consider both these aspects.

Let E(Q) be the set of rational points on E together with the point at infinity.
Remarkably, we can define an addition law on E(Q) by the simple geometric rule:
the sum of three points equals zero (the point at infinity) if and only if the points
lie on the same line. With respect to this law, E(Q) becomes an abelian group and,
moreover, by a famous result of Mordell published in 1922, a finitely generated
abelian group. Therefore E(Q) # Zr ⊕ E(Q)tors, where r is some nonnegative
integer called the (arithmetic) rank of E over Q, and E(Q)tors is the torsion part
of E(Q).
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We remark that we can talk about an elliptic curve E defined over any field K
(for the purpose of this paper, K will have characteristic %= 2, 3). Again, we can
define an abelian group structure on the set E(K) of K-rational points of E (N.B.
E(K) is a finitely generated abelian group if K is a global field). In particular, if E
is defined over Q, we can also talk about the group E(Q), where Q is the algebraic
closure of Q.

From now on let E be a fixed elliptic curve defined over Q. There are some
natural maps that we can define on E(Q). For each n ∈ Z, let us consider the
multiplication by n map defined on E(Q). These are group homomorphisms and
also morphisms of curves, called isogenies of E over Q. If we let EndQ(E) denote
the ring of all isogenies of E over Q, then we obtain a canonical embedding Z ≤
EndQ(E), which, in “most of the cases,” is in fact a ring isomorphism. If it is an
isomorphism, then we say that E is without complex multiplication (non-CM). If
the embedding is strict, then we obtain that EndQ(E) is an order in an imaginary
quadratic field Q(

√
−D) of class number 1 (hence D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163},

by a famous 1965’s result of Heegner–Stark–Baker). In this situation we say that
E is with complex multiplication (CM) and that Q(

√
−D) is its CM field.

The CM and non-CM situations are very different, as can be seen, for example,
from the following. For an arbitrary positive integer k we let E[k] be the group of
k-division points of E, that is, the points of E(Q) annihilated by k. We know that,
as Z-modules, E[k] # Z/kZ⊕ Z/kZ. If we adjoin to Q the x- and y-coordinates of
the k-division points of E, then we obtain a finite Galois extension of Q which is
unramified outside kN , with N denoting the conductor of E in the sense explained
below, and which contains the cyclotomic field Q(ζk). We denote this extension
by Q(E[k]) and call it the k-division field of E. We can then define a natural
representation

φk : Gal(Q(E[k])/Q)→ GL2(Z/kZ),

called the Galois representation associated to E[k], which is easily seen to be injec-
tive. Is this representation surjective? In 1941, M. Deuring showed that in the case
of a CM elliptic curve E, φk is not surjective for any integer k > 2. Moreover, in
this situation we have that

(1.2) φ(k)2 ≤ [Q(E[k]):Q] ≤ k2

for any k > 2, where φ(·) is the Euler function. By contrast, in 1972 J.-P. Serre
showed that in the case of a non-CM elliptic curve E, there exists a positive integer
A(E), depending on E, such that φk is surjective for any positive integer k coprime
to A(E). Therefore for such E and k we have

(1.3) [Q(E[k]):Q] = # GL2(Z/kZ) = k4
∏

q|k

(
1− 1

q

)(
1− 1

q2

)
,

where the product is over prime divisors q of k.
Now let us consider the reduction Ep of E modulo a prime p > 3 :

Ep : y2 ≡ x3 + ax + b (mod p).

This is a (not necessarily smooth) curve defined over Fp. There is an arithmetic
invariant N = NE ∈ Z of the elliptic curve E, called the conductor of E, which
gives us precise information about the reduction of E modulo each prime p. One
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of the properties of this invariant is that Ep is smooth if and only if p ! N . Clearly,
N is a divisor of the discriminant of the polynomial in x defining E.

From now on we will consider only primes p ! N , called primes of good reduction
for E. For such a p, Ep is an elliptic curve defined over Fp. This paper is concerned
with questions about the group Ep(Fp), as p varies. The most basic questions about
this group are to find its cardinality and to determine its structure.

The Riemann Hypothesis for Ep, proved by H. Hasse in 1933, asserts that if
we write

#Ep(Fp) = p + 1− ap

for some ap ∈ Z, then
|ap| ≤ 2

√
p.

We say that p is of supersingular reduction if ap = 0 and of ordinary reduction
otherwise.

Hasse’s bound implies that the polynomial X2 − apX + p has two complex
conjugate roots πp, πp such that |πp| = p1/2. As it turns out, the complex number
πp plays the role of the Frobenius map (x, y) *→ (xp, yp) on Ep, after identifying
the endomorphism ring EndFp

(Ep) with an order in an imaginary quadratic field
(ordinary case) or with an order in a quaternion algebra (supersingular case), where
Fp denotes an algebraic closure of Fp. Moreover, we have that Z[πp] ≤ EndFp(Ep).
Now EndFp(Ep) is always an order in an imaginary quadratic field. Thus if we de-
note by ∆p the discriminant of this order and by bp the index of Z[πp] in EndFp(Ep),
we obtain the formula

(1.4) a2
p − 4p = b2

p∆p.

The classical theory of elliptic curves provides us also with information about
the structure of Ep(Fp). If we let k be a nonzero integer, and if Ep(Fp)[k] denotes
the group of Fp-points of Ep annihilated by k, then Ep(Fp)[k] is isomorphic to
Z/kZ⊕Z/kZ for any (k, p) = 1, and to Z/kZ or {O} for any (k, p) %= 1. The group
Ep(Fp) can be viewed as a subgroup of Ep(Fp)[k] for some k such that #Ep(Fp) | k,
and so can be written as

Ep(Fp) # Z/dpZ⊕ Z/dpepZ
for uniquely determined positive integers dp, ep. More precisely, dp and ep are given
by the formal

dp = gcd
{

bp,
ap + bpδp − 2

2

}
, ep =

p + 1− ap

d2
p

,

where δp is 0 if ∆p ≡ 0 (mod 4) and 1 if ∆p ≡ 1 (mod 4). We refer the reader to
[8] for an explanation of how to deduce these formulas.

There is a rich family of questions regarding the group Ep(Fp) as p varies over
primes of good reduction for E: what is the percentage of the primes p for which
Ep(Fp) has order divisible by a fixed integer?; what can we say about the asymptotic
distribution of the dp’s?; what about the ep’s, or the Q(πp)’s, or the ap’s, or even
the bp’s? We will discuss some of these questions in what follows.

Throughout the paper, we will use the notation introduced above, as well as
classical notation. More precisely, p will denote a prime of good reduction for a
given elliptic curve E defined over Q; l, q will denote arbitrary rational primes; k
will denote a positive integer; x will denote a positive real number; for a positive
integer n, φ(n) will denote the Euler function of n, ν(n) the number of distinct
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prime divisors of n, and µ(n) the Möbius function of n; for a positive real number
x, π(x) will denote the number of primes ≤ x and lix the logarithmic integral∫ x
2 (log t)−1 dt; det and tr will denote the determinant and trace of a given matrix.

Whenever we write OA, +A, ,A, we will mean that the implied constants depend
on A; whenever we write O, +, ,, we will mean that the implied constants are
absolute.

2. Divisibility of #Ep(Fp) by fixed integers

We start our discussion with the simplest of the questions posed above.

Question 1. Let E be an elliptic curve defined over Q and of conductor N .
Let k be a fixed positive integer. What is the asymptotic behavior of the function

#{p ≤ x : p ! kN, k | #Ep(Fp)},

as x→∞?

The key fact which we will use in answering this question is the following
classical property of the representation φk:

Lemma 1. Let E be an elliptic curve defined over Q and of conductor N . Let p
be a prime and k be a positive integer such that p ! kN . If σp denotes the Frobenius
at p in Q(E[k])/Q, then

trφk(σp) ≡ ap (mod k), detφk(σp) ≡ p (mod k).

Therefore,

(2.1) k | #Ep(Fp) ⇐⇒ σp ⊆ Ck,

where

(2.2) Ck := {g ∈ Gal(Q(E[k])/Q) : det φk(g) + 1− trφk(g) ≡ 0 (mod k)}.

By using the classical Chebotarev density theorem we then obtain:

Theorem 1. Let E be an elliptic curve defined over Q and of conductor N .
Let k be a fixed positive integer. Then, as x→∞,

#{p ≤ x : p ! kN, k | #Ep(Fp)} ∼
#Ck

[Q(E[k]):Q]
lix.

We remark that it can be shown that #Ck is ≈ k in the CM case and ≈ k3

in the non-CM case. Thus, from (1.2) and (1.3), we can deduce that the density
above should be ≈ 1/k.

3. Distribution of the dp’s and the cyclicity of Ep(Fp)

Let us be a little more courageous and ask:

Question 2. Let E be an elliptic curve defined over Q and of conductor N .
Let d be a fixed positive integer. What is the asymptotic behavior of the function

#{p ≤ x : p ! dN, dp = d},

as x→∞?
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This is already a more difficult question: not only do we want d|#Ep(Fp), but
also we ask for the stronger conditions that Ep(Fp) contain a subgroup isomorphic
to Z/dZ⊕Z/dZ and that this be the biggest two-copy of a cyclic group that occurs
among the subgroups of Ep(Fp).

The case d = 1 has been extensively studied in the past 25 years. In 1975
[1], I. Borosh, C. J. Moreno and H. Porta made several computations which led
them to expect that for many elliptic curves E we have dp = 1 (i.e., the group
Ep(Fp) is cyclic) for infinitely many primes p. In 1976 [31], J.-P. Serre confirmed
this expectation by proving, under the assumption of the generalized Riemann
hypothesis (GRH) for the Dedekind zeta functions of the division fields Q(E[k]) of
E, that

(3.1) #{p ≤ x : p ! N,Ep(Fp) cyclic} ∼
∑

k≥1

µ(k)
[Q(E[k]):Q]

lix.

As explained for example in [10], the density above is positive if and only if
Q(E[2]) %= Q.

There are many aspects of the cyclicity problem that we can consider. Can
we remove GRH in Serre’s result? Can we obtain effective error terms? What is
the size of the smallest prime p for which Ep(Fp) is cyclic? In 1979 [26], M. R.
Murty removed GRH in (3.1) in the case of a CM elliptic curve. His unconditional
proof made use of class field theoretical (CFT) properties of the division fields of
CM elliptic curves (not available in the non-CM case!) and of the large sieve for
number fields in the form of a Bombieri–Vinogradov theorem for number fields (due
to R. J. Wilson). In 1987 [27], M. R. Murty also showed, unconditionally, that for
certain non-CM elliptic curves E there exist infinitely many primes p for which
Ep(Fp) is cyclic. In 1990 [19], R. Gupta and M. R. Murty used sieve methods to
show, unconditionally and for any elliptic curve E such that Q(E[2]) %= Q, that

#{p ≤ x : p ! N,Ep(Fp) cyclic},N
x

(log x)2
.

Hence, unconditionally, there are infinitely many primes p for which Ep(Fp) is
cyclic if Q(E[2]) %= Q. In [2, 3], the author managed to replace GRH in (3.1)
with a 3

4 -quasi GRH (that is, a zero-free region of Re(s) > 3
4 ) in the case of a

non-CM elliptic curve E. In [3, 5] she also obtained a new simpler unconditional
proof of (3.1) in the case of a CM elliptic curve E by removing the use of CFT
and of the large sieve for number fields, and by using instead the sieve of Eratos-
thenes. We remark that the proofs of all these results will lead to error terms of the
form ON (x log log x/(log x)2) (the conditional formulas for non-CM and CM curves)
and ON (x/(log x)B) or ON (x/[(log x)(log log log x)]) (the unconditional formulas
for CM curves), where B is any positive integer. However, it is shown in [3, 10]
that if we assume the full strength of GRH, then these error terms can be improved
to ON (x5/6(log x)2/3) in the non-CM case and ON (x3/4(log x)1/2) in the CM case.
The dependence of the ON -constant on N can also be made explicit. Then, by
comparing the main term with the error term, we obtain that, under GRH, the
smallest prime p for which Ep(Fp) is cyclic is Oε

(
(log N)4+ε

)
in the non-CM case

and Oε

(
(log N)2+ε

)
in the CM case, for any 0 < ε < 1.

Now let us return to the general situation stated in Question 2. The same
technique as for d = 1 can be applied for an arbitrary d and will lead to very
similar results. More precisely, we obtain the following:
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Theorem 2. Let E be an elliptic curve defined over Q and of conductor N .
Let d be a positive integer.

(1) Assume that E is without CM.
(a) If a 3

4 -quasi GRH holds for the Dedekind zeta functions of the division
fields of E, then

#{p ≤ x : p ! dN, dp = d} =
∑

k≥1

µ(k)
[Q(E[dk]):Q]

lix + Od,N

(
x log log x

(log x)2

)
.

(b) If GRH holds for the Dedekind zeta functions of the division fields of
E, then

#{p ≤ x : p ! dN, dp = d} =
∑

k≥1

µ(k)
[Q(E[dk]):Q]

lix + Od,N (x5/6(log x)2/3).

(2) Assume that E is with CM.
(a) Unconditionally,

#{p ≤ x : p ! dN, dp = d} =
∑

k≥1

µ(k)
[Q(E[dk]):Q]

lix + Od,N

(
x

(log x)(log log log x)

)
.

(b) If GRH holds for the Dedekind zeta functions of the division fields of
E, then

#{p ≤ x : p ! dN, dp = d} =
∑

k≥1

µ(k)
[Q(E[dk]):Q]

lix + Od,N (x3/4(log x)1/2).

As already mentioned, the proof of this theorem is based on the same arguments
as the ones used in the case d = 1 (see [2, 3, 5, 10]). For clarity, we will give a
summary of the proof of part 1(b). The complete proof of the theorem will appear
in an upcoming paper.

Before discussing the ideas of the proof, let us point out that, in this generality,
Theorem 2 provides answers to a conjecture posed in [35]. To be more precise, it
was predicted in [35, Conjectures 2 and 2’] that, for an elliptic curve E defined over
Q and for an integer d,

#{p ≤ x : p ! dN, dp = d} ∼
∑

k≥1

µ(k)
[Q(E[dk]):Q]

lix,

as x → ∞. Thus, by part 1(a) of Theorem 2, this conjectural law is true in the
non-CM case under a 3

4 -quasi GRH, and by part 2(a), it is true in the CM case
under no hypothesis.

The first key ingredient in the proof of Theorem 2 is the following simple, but
important, result (for a proof, see [26, pp. 153–154]).

Lemma 2. Let E be an elliptic curve defined over Q and of conductor N . Let
p and d be such that p ! dN . Then Ep(Fp) contains a subgroup isomorphic to
Z/dZ⊕ Z/dZ if and only if p splits completely in Q(E[d])/Q.

Another key ingredient is an effective version of the Chebotarev density theo-
rem, due to J. Lagarias and A. Odlyzko [22].
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Lemma 3 (Effective Chebotarev Density Theorem). Let L/Q be a finite Galois
extension, of Galois group G, degree nL and discriminant disc(L/Q). Let C be a
conjugacy set (that is, a finite union of conjugacy classes) of G. We set

πC(x, L/Q) := #{p ≤ x : σp ⊆ C},
where σp is the Frobenius of p in L/Q.

(1) There exist positive constants c1 and c2, with c1 effective and c2 absolute,
such that, if

√
log x

nL

≥ c2 max(log |dL|, |dL|1/nL),

then

πC(x, L/Q) =
#C

#G
lix + O

(
(#C̃)x exp

(
−c1

√
log x

nL

))
,

where C̃ denotes the set of conjugacy classes contained in C.
(2) Assume that a δ-quasi GRH holds for the Dedekind zeta function of L

(that is, we have a zero-free region of Re(s) > δ for the Dedekind zeta
function of L). Then

πC(x, L/Q) =
#C

[L:Q]
lix + O

(
(#C)xδ

(
log |disc(L/Q)|

[L : Q]
+ log x

))
.

Sketch of proof of part 1(b) of Theorem 2. By Lemma 2 and Hasse’s
bound, we can write

#{p ≤ x : p ! dN, dp = d} =
∑

k≤2
√

x

µ(k)π1(x, Q(E[dk])/Q).

We split this sum into two parts, according to whether k < y or y < k ≤ 2
√

x for
some parameter y = y(x) to be chosen later. We use part 2 of Lemma 3 with δ = 1

2
to estimate the first subsum, and obtain

∑

k≤y

µ(k)π1(x, Q(E[dk])/Q) =
∑

k≤y

µ(k)
[Q(E[dk]):Q]

lix + Od,N (yx1/2 log x).

To estimate the sum running over y < k ≤ 2
√

x we note that if a prime p splits
completely in Q(E[dk]), then it also does in Q(ζdk), since Q(ζdk) ⊆ Q(E[dk]).
Hence, for such a prime p, we have p ≡ 1 (mod dk). On the other hand, by Lemma
4, p must also satisfy p + 1− ap ≡ 0 (mod d2k2). Therefore we can write

∑

y<k≤2
√

x

µ(k)π1(x, Q(E[dk])/Q)

≤
∑

y<k≤2
√

x

#{p ≤ x : p ! dN, p ≡ 1 (mod dk), p + 1− ap ≡ 0 (mod d2k2)}

≤
∑

|a|≤2
√

x
a%=2

∑

y<k≤2
√

x
k|a−2

∑

p≤x
ap=a

k2|p+1−a

1 +
∑

y<k≤2
√

x

∑

p≤x
ap=2

k2|p−1

1

=:
∑

1
+

∑
2
.
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Now we use elementary estimates to get

∑
1
+

∑

y<k≤2
√

x

( x

k2
+ 1

) √x

k
+ x

√
x

y2
+
√

x log x,

∑
2
+

∑

y<k≤2
√

x

( x

k2
+ 1

)
+ x

y
+
√

x.

We choose

y :=
(

x

log x

)1/3

and, by putting together all of the above, we obtain

(3.2) #{p ≤ x : p ! dN, dp = d} =
∑

k≤y

µ(k)
[Q(E[dk]):Q]

lix + Od,N (x5/6(log x)2/3).

By using properties (3) of [Q(E[dk]):Q] we can also estimate the tail

∑

k>y

µ(k)
[Q(E[dk]):Q]

lix,

and, with a little more care, we can obtain the dependence on N of the occurring
Od,N -constants. This requires knowledge of upper bounds in terms of N for the
constant A(E) mentioned in Section 1. Such bounds can be found in [6, 32]. We
can finally show that

# {p ≤ x : p ! dN, dp = d} =
∑

k≥1

µ(k)
[Q(E[dk]):Q]

lix + Od(x5/6(log Nx)2/3)

+ Od

(
(log log x)(log Nx)

log x
(log N)3(log log 2N)6

)
,

from which we can deduce (under the assumption that the density above is positive)
that the size of the smallest prime p such that dp = d is Od,ε

(
(log N)4+ε

)
for any

0 < ε < 1. !

Let us remark that in the above proof of (3.2) we did not use that E was a
non-CM elliptic curve. However, the proof of the improved error term occurring
in part 2(b) of Theorem 2 does use that in that situation we have a CM elliptic
curve. Also, we remark that our proof of (3.2) can be generalized to elliptic curves
defined over any number field. This is an advantage that we have over the proofs
of parts 1(a) and 2(b) of the theorem, in which we invoke the Brun–Titchmarsh
theorem whose number field version is not straightforward. Finally, we point out
that it is an easy exercise to obtain the explicit dependence of the occurring O-
constants on the integer d.

4. Primitive points on Ep(Fp)

Having obtained satisfactory answers to the question of how often dp = 1, hence
Ep(Fp) is cyclic, we can proceed to asking a stronger question:
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Question 3. Let E be an elliptic curve defined over Q, of conductor N and
of arithmetic rank ≥ 1. Let a ∈ E(Q) be a point of infinite order. What is the
asymptotic behavior of

#{p ≤ x : p ! N,Ep(Fp) = 〈a (mod p)〉},
as x → ∞ (N.B. we may need to exclude the primes p dividing the denominators
of the coordinates of a)?

This question was formulated by S. Lang and H. Trotter in 1976 [24]. They con-
jectured the existence of the density of the primes p for which Ep(Fp) = 〈a (mod p)〉,
a prediction that could be viewed as an elliptic curve analogue of Artin’s primitive
root conjecture. We should observe, though, that while in the classical situation of
E. Artin the group F∗p is always cyclic, in the elliptic curve situation of Lang–Trotter
the group Ep(Fp) may not be cyclic. Therefore it was only natural that we studied
the cyclicity of Ep(Fp) first.

In 1986 [18], R. Gupta and M. R. Murty showed that, under GRH, the above
conjecture of Lang–Trotter is true for CM elliptic curves. More precisely, they used
Chebotarev density arguments and sieve methods for the fields Q(E[k], k−1a) to
prove:

Theorem 3 (R. Gupta, M. R. Murty, 1986). Let E be a CM elliptic curve
defined over Q, of conductor N and of arithmetic rank ≥ 1. Let K be the CM field
of E. Let a ∈ E(Q) be a point of infinite order. If GRH holds for the Dedekind
zeta functions of the fields Q(E[k], k−1a), then there exists a constant C(E, a),
depending on E and a (and defined in terms of Q(E[k], k−1a)), such that

#{p ≤ x : p ! N, p splits in K, Ep(Fp) = 〈a (mod p)〉}
= C(E, a) li x + ON

(
x log log x

(log x)2

)
.

If K is one of Q(
√
−11), Q(

√
−19), Q(

√
−43), Q(

√
−67), Q(

√
−163), then the

density C(E, a) is positive.

Currently, nothing is known about the primes p which are inert in the CM field
K of E. In addition, nothing is known about Question 3 in the case of a non-CM
curve.

In 1986 and 1990, R. Gupta and M. R. Murty considered higher rank analogues
of Question 3, which were also formulated, with conjectural answers, by Lang and
Trotter in 1976 (see [24]). They provided conditional and unconditional answers to
these questions in both the CM and non-CM cases. For a detailed discussion and
precise formulations of their results, we refer the reader to [18,19,29].

5. Square-free orders for Ep(Fp)

We turn our attention to the integers ep appearing in the description of the
group Ep(Fp). For example, by observing that the cyclicity of Ep(Fp) is ensured if
the order of the group is square-free, we can ask:

Question 4. Let E be an elliptic curve defined over Q and of conductor N .
What is the asymptotic behavior of the function

#{p ≤ x : p ! N,#Ep(Fp) square-free},
as x→∞?
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In other words, we are interested in the primes p for which both the conditions
that dp = 1 and ep is square-free are satisfied.

In trying to answer this question, we start with the basic observation that

#Ep(Fp) is square-free ⇐⇒ q2 ! #Ep(Fp) for any prime q.

Thus we want to estimate the number of primes p for which q ! dp for any q and
q2 ! ep for any q. We have seen in Section 4 that the behavior of the dp’s is well
understood. The study of the behavior of the ep’s is more challenging, one of the
difficulties that we encounter being that the distribution of the ep’s is related to the
distribution of primes p (not) splitting completely in “too small” field extensions.
Luckily, however, in the CM case we have the following beautiful characterization
of the squarefreeness of ep (for a proof, see [4]):

Lemma 4. Let E be a CM elliptic curve defined over Q, of conductor N and
with complex multiplication by the full ring of integers OK of an imaginary quadratic
field K. Let p ! N be a prime of ordinary good reduction for E. Then #Ep(Fp)
is square-free if and only if p splits completely in K, as (p) = (πp)(πp), and πp

does not split completely in K(E[q]) for any inert prime ideal q of K, in K(E[q2])
for any ramified prime ideal q of K, and in K(E[qq]), K(E[q2]), and K(E[q2]) for
any split prime ideal q of K. Here, for an ideal (α) of K, we denote by E[(α)] the
kernel of the multiplication by α map.

Therefore, by remark (2.1) made in Section 2 and by the above lemma, in order
to answer Question 4 for CM elliptic curves with CM by K, we need to estimate
the number of primes that satisfy Chebotarev conditions in division fields of the
form K(E[q]) and K(E[q2]). These extensions are “sufficiently large,” and then,
by using Chebotarev density theorems and sieve methods, we can prove:

Theorem 4. Let E be a CM elliptic curve defined over Q and of conductor N ,
with complex multiplication by the full ring of integers of an imaginary quadratic
field.

(1) Unconditionally, we have that

#{p ≤ x : p ! N,#Ep(Fp) square-free}

=
∑

k≥1

µ(k)#Ck2

[Q(E[k2]):Q]
lix + ON

(
x

(log x)(log log log x)

)
.

(2) Under GRH for the Dedekind zeta functions of the division fields of E,
we have that

#{p ≤ x : p ! N,#Ep(Fp) square-free} =
∑

k≥1

µ(k)#Ck2

[Q(E[k2]):Q]
lix + ON (x7/8(log x)7).

Here, the conjugacy sets Ck2 are as in (2.2).

Similar, but conditional, asymptotic formulas can also be obtained in the non-
CM case, but by using a different and more elaborate approach. For proofs of all
these results, we refer the reader to [3,4].

6. Prime orders for Ep(Fp)

What if the order of Ep(Fp) is not only square-free, but also a prime (which
means, dp = 1 and ep is prime)? In other words:
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Question 5. Let E be an elliptic curve defined over Q and of conductor N .
What is the asymptotic behavior of the function

#{p ≤ x : p ! N,#Ep(Fp) prime},

as x→∞?

In 1988 [21], N. Koblitz showed the relevance of this question to the theoretical
study of elliptic curve cryptography. We recall that certain public-key cryptosys-
tems (based on the intractability of the discrete logarithm problem) can be imple-
mented using the group of points of an elliptic curve defined over a finite field. A
desirable property of this curve is that the cyclic group generated by a fixed point
of the curve have order divisible by a large prime. By choosing the elliptic curve
such that its group of points has (large) prime order, the desired property is clearly
satisfied for any point.

The basic observation in approaching Question 5 is that

#Ep(Fp) is a prime “⇐⇒” q ! #Ep(Fp) for any prime q ≤ √p + 1,

where by “⇔” we mean that care should be taken with the prime values of #Ep(Fp)
which may lie between √p − 1 and √p + 1. Then, by using remark (2.1), we can
write

(6.1) #{p ≤ x : #Ep(Fp) prime} “=”
∑

k≤
√

x+1

µ(k)#{p ≤ x : σp ⊆ Ck}.

This formula suggests that the number of primes p ≤ x for which #Ep(Fp) is prime
should be

∼ C(E)
x

(log x)2

for some (positive) constant C(E) depending on E, as already conjectured by
Koblitz in [21].

Now let us remark further that Question 5 could be viewed as an elliptic curve
analogue of the classical twin prime conjecture: we want to count primes p for
which p + (1 − ap) is also a prime. As in the classical case, the densities ≈ 1/k of
the primes p for which k | #Ep(Fp) will direct us to serious difficulties in trying
to estimate (6.1). Nevertheless, we recall that an ingenious use of the lower bound
sieve allowed J. Chen to prove in 1973 that there are infinitely many primes p such
that p + 2 has at most 2 prime divisors. In 2001 [25], S. A. Miri and V. K. Murty
carried out an elliptic curve version of Chen’s method and showed:

Theorem 5 (Miri and Murty [25]). Let E be a non-CM elliptic curve defined
over Q and of conductor N . Assume that GRH holds for the Dedekind zeta functions
of the division fields of E. Then there exist

,N
x

(log x)2

primes p ≤ x, p ! N , for which #Ep(Fp) has at most 16 prime divisors (counted
with multiplicities).

A similar result holds in the CM case, unconditionally, as will be explained
in [7].
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7. Distribution of the Frobenius fields

In our discussions of Questions 2–5 we were more successful in the CM case
than in the non-CM case. One of the features of the CM curves which contributed
to our success concerns the imaginary quadratic fields Q(πp) that were introduced
in Section 1. More precisely, this special feature is related to the following question:

Question 6. Let E be an elliptic curve defined over Q and of conductor N .
Let K be an imaginary quadratic field. What is the asymptotic behavior of

#{p ≤ x : p ! N, ap %= 0, Q(πp) = K},

as x→∞?

It is not difficult to answer this question in the CM case. First we observe
that Q(πp) ⊆ EndFp

(Ep)⊗Z Q. Then, if E has CM by some field K and if p is an
ordinary prime for E, we have K = EndFp

(Ep)⊗Z Q. Thus we obtain:

Theorem 6. Let E be a CM elliptic curve defined over Q and of conductor
N . Let K be the CM field of E. Then Q(πp) = K for any prime p ! N of ordinary
reduction for E.

To answer Question 6 in the non-CM case is far more difficult. It was conjec-
tured by S. Lang and H. Trotter in 1976 [23] that if E is a non-CM curve, then, as
x→∞,

#{p ≤ x : p ! N, Q(πp) = K} ∼ C(E,K)
x1/2

log x

for some positive constant C(E,K) depending on E and K.
In 1981 [32], J.-P. Serre asserted that one could obtain nontrivial upper bounds

for the above quantity, by using Chebotarev type arguments and Selberg’s sieve.
Recently, the author, É. Fouvry and M. R. Murty completed the proof of such
results by using the much simpler square sieve (see [9]). To be more precise, if p is
a prime such that Q(πp) = K for some imaginary quadratic field K of discriminant
∆, then ∆(a2

p − 4p) must be equal to a square. The square sieve is a device that
suggests how to obtain upper bounds for the number of squares in a finite (multi)set
of positive integers. By applying this sieve to the sequence {∆(a2

p − 4p)}p≤x, and
by invoking effective versions of the Chebotarev density theorem, we can prove:

Theorem 7 (Cojocaru, Fouvry, and Murty [9]). Let E be a non-CM elliptic
curve defined over Q and of conductor N . Let K = Q(

√
−D) be an imaginary

quadratic field, where D is positive and square-free. Let x ≥ 3.
(1) Unconditionally, we have that

#{p ≤ x : p ! N, Q(πp) = K}+N
x(log log x)13/12

(log x)25/24
(1 + ν(D)).

If DE(x) denotes the set of (distinct) square-free parts of 4p−a2
p for primes

p ≤ x of ordinary reduction for E, then there exists x0 = x0(N) such that,
for any x ≥ x0,

#(DE(∞) ∩ [1, x]),N log log log x.

In particular, there are infinitely many distinct fields Q(πp).
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(2) If we assume GRH for the Dedekind zeta functions of the division fields
of E, then

#{p ≤ x : p ! N, Q(πp) = K}+N x17/18 log x

and

#DE(x),N
x1/18

(log x)2
.

We note that additional improvements of the above bounds can be obtained
by assuming the validity of Artin’s holomorphy conjecture and of a pair correlation
conjecture (see [9]).

8. Distribution of the ap’s

Now let us investigate the integers ap. More precisely, let us consider:

Question 7. Let E be an elliptic curve defined over Q and of conductor N .
Let a be a fixed integer. What is the asymptotic behavior of

#{p ≤ x : p ! N, ap = a},
as x→∞?

For example, consider a CM elliptic curve E with CM by Q(i) and try to
count the primes p for which ap = 2. By Theorem 6 and (1.4)), this implies that
p = n2 +1 for some integer n. Thus our question can be viewed as an elliptic curve
analogue of the classical Buniakowski–Schinzel hypothesis about the prime values
of the polynomial n2 + 1.

In 1976 [23], S. Lang and H. Trotter conjectured that there exists a constant
C(E), depending on E, such that, as x→∞,

#{p ≤ x : p ! N, ap = a} ∼ C(E)
x1/2

log x
.

The only exception to this conjectural rule occurs in the case a = 0 and E a CM
curve, about which we know:

Theorem 8 (Deuring [11]). Let E be a CM elliptic curve defined over Q and of
conductor N . Then, with finitely many exceptions, a prime p ! N is supersingular
if and only if it is inert in the CM field of E, and so, as x→∞,

#{p ≤ x : p ! N, ap = 0} ∼ 1
2
· x

log x
.

If a %= 0 and E is CM, then the Lang–Trotter conjecture is consistent with clas-
sical conjectures of Hardy–Littlewood about the distribution of primes in quadratic
extensions. If E is non-CM, the Lang–Trotter conjecture seems at least as difficult.

It is easy to obtain upper bounds for the number of primes p for which ap = a
if E is a CM curve and a %= 0. Indeed, in this case we can use (1.4) with ∆p = ∆
for some ∆ independent of p to deduce that

#{p ≤ x : p ! N, ap = a} = #
{

p ≤ x : p ! N, p =
(

a

2

)2

−
(

bp

2

)2

∆
}
+ x1/2.

By using sieve theory (e.g., Brun’s sieve), one could actually improve this bound
to obtain:
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Theorem 9. Let E be a CM elliptic curve defined over Q and of conductor N .
Let a be a nonzero arbitrary integer. Then

#{p ≤ x : p ! N, ap = a}+ x1/2

log x
.

The non-CM situation is not that easy anymore. The first results in this case
were obtained by Serre [32] (by invoking Chebotarev type arguments) and by V. K.
Murty [30] (by appealing to different arguments from Serre’s). More precisely, we
have:

Theorem 10. Let E be a non-CM elliptic curve defined over Q and of con-
ductor N . Let a be an arbitrary integer.

(1) (Serre [32]) If a %= 0, ±2, then

#{p ≤ x : p ! N, ap = a}+N
x(log log x)2/3(log log log x)1/3

(log x)4/3
.

If a = ±2, then

#{p ≤ x : p ! N, ap = a}+N
x(log log x)1/2(log log log x)1/4

(log x)5/4
.

If a = 0, then

#{p ≤ x : p ! N, ap = 0}+N
x(log log x)(log log log x)1/2

(log x)3/2
.

(2) (Serre, [32]) Assume GRH for the Dedekind zeta functions of the division
fields of E. If a %= 0, ±2, then

#{p ≤ x : p ! N, ap = a}+N
x5/6

(log x)1/3
.

If a = ±2, then

#{p ≤ x : p ! N, ap = a}+N
x7/8

(log x)1/2
.

If a = 0, then

#{p ≤ x : p ! N, ap = 0}+N x3/4.

(3) (Murty [30]) Assume that we have analytic continuation, functional equa-
tion and a Riemann Hypothesis for the L-series attached to the symmetric
powers of the Galois representations of E (for definitions, see [30]). Then,
as x→∞,

#{p ≤ x : p ! N, ap = a}+N x3/4(log x)1/2.

It was also noted by N. Elkies and M. R. Murty (see [14, pp. 25–26] and [16])
that the upper bound ON (x3/4) for the number of supersingular primes ≤ x can
be obtained unconditionally by using a result of M. Kaneko [20].

The question of finding lower bounds is even more difficult. The only results
known at the moment concern supersingular primes.

Theorem 11. Let E be a non-CM elliptic curve defined over Q and of con-
ductor N .
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(1) (Elkies [15]) There are infinitely many primes p such that ap = 0. More-
over, if GRH holds for the Dedekind zeta function of any quadratic exten-
sion of Q, then, as x→∞,

#{p ≤ x : p ! N, ap = 0}, log log x.

(2) (Fouvry and Murty [17]) For any δ > 0, there exists a positive real number
x0(E, δ) such that

#{p ≤ x : p ! N, ap = 0} ≥ log log log x

(log log log log x)1+δ

for any x > x0(E, δ).

9. Distribution of the bp’s

Finally, let us turn our attention to the integers bp appearing in (1.4). It is
clear from the definition that they are natural companions of the integers ap. It is
natural to ask:

Question 8. Let E be an elliptic curve defined over Q and of conductor N .
Let b be a fixed positive integer. What is the asymptotic behavior of

#{p ≤ x : p ! bN, bp = b},

as x→∞?

The case b = 1 of this question was investigated by the author and W. Duke in
[8]. The starting point in these investigations is to put the integers ap and bp in a
more convenient context. This is accomplished by realizing that the matrix

(
(ap + bpδp)/2 bp(
bp(∆p − δp)

)
/4 (ap − bpδp)/2

)
,

reduced modulo an integer k such that p ! kN , represents the Frobenius at p in the
k-division field Q(E[k]) (see [13]). Consequently, we have:

Lemma 5. Let E be an elliptic curve defined over Q and of conductor N .
Let p be a prime and k a positive integer such that p ! kN . Then k | bp if
and only if p splits completely in the subfield Jk of Q(E[k]) fixed by the scalars
of Gal(Q(E[k])/Q).

Using this result we can then write

(9.1) #{p ≤ x : p ! bN, bp = b}

=
∑

k≤2
√

x

µ(k)#{p ≤ x : p ! bN, p splits completely in Jbk}.

As in our discussions about the distributions of the dp’s and ep’s, we can apply
the Chebotarev density theorem to estimate (9.1), but, again, this will be possible
only in a short range of the indices k. The challenging part will be to estimate
the remaining sum. We point out that, unlike the full k-division field, Jk does not
contain the cyclotomic field Q(ζk). Hence the Brun-Titchmarsh theorem that we
usually rely on cannot be invoked anymore.

Surprisingly, if E is a CM elliptic curve, then (9.1) can be handled fairly simply,
as follows. First we distinguish between ordinary and supersingular primes p. Then
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we note that the ordinary primes contribute very little to our estimates (and this
does not happen anymore if E is non-CM!). Indeed, by Lemma 5, we get that

#{p ≤ x : p ! bN, ap %= 0, bp = b}

≤ #
{

p ≤ x : ap %= 0, p =
(

ap

2

)2

− b2∆
4

}
+ x1/2,

where we recall that ∆ = ∆p is independent of p in the ordinary case. The main
contribution to our final estimates will be given by the supersingular primes of
E. However, we note that for supersingular primes p such that bp = b we have
−4p = b2∆p, hence b can only be 1 or 2. Thus, if b ≥ 3, then

# {p ≤ x : p ! bN, ap = 0, bp = b} = 0,

and if b = 1 or 2, then, by Theorem 8 and Lemma 5,

#{p ≤ x : p ! bN, ap = 0, bp = 1} = #{p ≤ x : p ! N, p is inert in K and J2},
#{p ≤ x : p ! bN, ap = 0, bp = 2}

= #{p ≤ x : p ! 2N, p is inert in K and splits in J2}.
We finish off by invoking the unconditional effective Chebotarev density theorem
for the fields K and J2 (see part 1 of Lemma 3), and we obtain:

Theorem 12 (Cojocaru and Duke [8]). Let E be a CM elliptic curve defined
over Q and of conductor N . Let b be a positive integer. Then

#{p ≤ x : p ! bN, bp = b} = C(E) li x + error(x),

where

C(E) =






1
2 − 1/[J2:Q] + 1/[J2K:Q] if b = 1
1/[J2:Q]− 1/[J2K:Q] if b = 2
0 if b ≥ 3

and

error(x) =

{
ON (x/(log x)B) if b = 1 or b = 2
O(x1/2) if b ≥ 3,

for any B > 0.

Let us note that, as with Theorem 9, by using sieve theory the error term
O(x1/2) can be improved to O(x1/2/ log x).

Clearly, the above proof cannot be emulated if E is a non-CM elliptic curve.
In this situation, the key observation for handling the ordinary primes p that split
completely in Jbk for (large) indices k is that k2 | 4p − a2

p, and so m(4p − a2
p) is

a square for some (small) positive integer m. We can now invoke the square sieve
that we already appealed to in our approach on Question 6. We obtain:

Theorem 13 (Cojocaru and Duke [8]). Let E be a non-CM elliptic curve
defined over Q and of conductor N . Let b be a positive integer. Assume that GRH
holds for the division fields of E. Then

#{p ≤ x : p ! bN, bp = b} =
∑

k≥1

µ(k)
[Jbk:Q]

lix + Ob,N,ε(x53/54+ε)

for any 0 < ε < 1.
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For the details of the proof in the case b = 1, we refer the reader to [8]. The
general case is dealt with the same, mutatis mutandis.

We remark that the integers b2
p can be interpreted as the orders of the Tate-

Shafarevich groups of the curves Ep viewed as constant curves defined over their
own function fields (see the explanations in [8]). This may lead to new interesting
meanings of the above two results. We also remark that if bp = 1, then dp = 1 (i.e.,
the group Ep(Fp) is cyclic), and so Question 8 can be viewed as a refinement of
Question 2 which we discussed at the beginning of the paper.

10. Concluding remarks

As already suggested in our discussions above, there are many questions about
Ep(Fp) which remain unanswered. Among them, the most notable ones are the
Lang–Trotter conjectures and the Koblitz conjecture. Other questions of interest
concern the positivity of the asymptotic constants that occur in some of our results
(e.g., Theorems 2, 4, and 13), and upper bounds for the smallest prime p for which
Ep(Fp) has a given property. These questions will be discussed in a forthcoming
paper.

Most of the results that we discussed have (certain) generalizations to elliptic
curves defined over number fields. A natural direction of research is to study if
similar results can be obtained for elliptic curves defined over function fields. Even
more generally, one can study analogous questions about reductions of abelian
varieties and Drinfeld modules, even though the formulation of these questions
may not be straightforward.

Finally, we remark that there is a vast literature concerning reductions modulo
primes of an elliptic curve. In our present survey, many important questions, such
as the Sato–Tate conjecture, had to be left out. The only criterion used in selecting
the aspects of Ep(Fp) that we discussed was the author’s own current research.
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