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Abstract Let E be an elliptic curve defined over Q, of conductor N , and with
complex multiplication. We prove unconditional and conditional asymptotic formulae
for the number of ordinary primes p ! N , p ≤ x , for which the group of points of the
reduction of E modulo p has square-free order. These results are related to the problem
of finding an asymptotic formula for the number of primes p for which the group of
points of E modulo p is cyclic, first studied by Serre (1977). They are also related to
the stronger problem about primitive points on E modulo p, formulated by Lang and
Trotter (Bull Am Math Soc 83:289–292, 1977), and the one about the primality of the
order of E modulo p, formulated by Koblitz [Pacific J. Math. 131(1):157–165, 1988].
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1 Introduction

Let E be an elliptic curve defined over Q and of conductor N . For a prime p of good
reduction for E (that is, p ! N ), let E p be the reduction of E modulo p. This is
an elliptic curve defined over the finite field Fp with p elements, whose Fp-rational
points E p(Fp) form a finite abelian group isomorphic to Z/dpZ×Z/dpepZ for some
uniquely determined integers dp, ep, depending on p and E . Moreover, the order of
this group can be written as #E p(Fp) = p + 1 − ap for some integer ap satisfying
Hasse’s inequality |ap| ≤ 2

√
p. If p ≥ 5 and ap = 0, we say that p is a supersingular

prime for E ; if p ≥ 5 and ap &= 0, we say that p is an ordinary prime for E .
Over the past three decades there has been an increasing interest in studying the

properties of the group E p(Fp) as p varies over rational primes ! N . Our purpose in
this paper is to determine an asymptotic formula for the function

hE (x, Q) := #
{

p ≤ x : p ! N , ap &= 0, #E p(Fp) is square-free
}

(1)

in the case of an elliptic curve with complex multiplication (CM).
Before stating the main result, let us recall what CM means. If Q denotes an algebraic

closure of Q, and EndQ(E) denotes the ring of endomorphisms of E over Q, then we
have a natural embedding Z ≤ EndQ(E). If this embedding is an isomorphism, we
say that E is without complex multiplication (or non-CM). If it is a strict embedding,
then EndQ(E) is an order O in an imaginary quadratic field K of class number 1. In
this case we say that E has complex multiplication by O, and that K is its CM field.

The main results of the paper are as follows.

Theorem 1.1 Let E be an elliptic curve defined over Q and of conductor N. Assume
that E has complex multiplication by the full ring of integers OK of an imaginary
quadratic field K . Let x ∈ R be such that log x > 3N 2. Then there exists a constant
δE , depending on E, such that

hE (x, Q) = δE li x + ON

(
x

(log x)(log log log x)

)
, (2)

or, more precisely,

hE (x, Q) = δE li x + O

(
x

(log x)(log log log x
N 2 )

· log log x

log log x
N 2

)

. (3)
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Square-free orders for CM elliptic curves modulo p 589

Here, li x =
∫ ∞

2
dt

log t is the logarithmic integral, the constant implied in the
ON -notation depends on N, and the constant implied in the O-notation is absolute.
The density δE will be given explicitly in formula (40) of Sect. 6.

In our investigations towards the asymptotic formula for hE (x, Q) we will be inter-
ested not only in the main term of the formula, but also in the error terms, as already
apparent in our statement of Theorem 1.1. A natural problem is then to look for the
best error term which we can obtain. Under the assumption of a generalized Riemann
hypothesis (GRH), we will obtain an error term significantly smaller than the one
in (3):

Theorem 1.2 Let E be an elliptic curve defined over Q and of conductor N. Assume
that E has complex multiplication by the full ring of integers OK of an imaginary
quadratic field K . Assume the validity of GRH for the Dedekind zeta functions of the
division fields of E. Then there exists a constant δE , depending on E, such that

hE (x, Q) = δE li x + O
(

x5/6(log x)2(log N x)1/3
)
. (4)

The implied O-constant is absolute.

Certainly, it is of interest to also know when the density δE is positive. We can
show:

Theorem 1.3 Let E be an elliptic curve defined over Q and of conductor N. Assume
that E has complex multiplication by the full ring of integers OK of an imaginary
quadratic field K . Let δE be the density of the ordinary primes p for which #E p(Fp)

is square-free.

1. If K = Q(
√−7), then δE = 0.

2. If K is one of Q(
√−11), Q(

√−19), Q(
√−43), Q(

√−67), or Q(
√−163), then

δE > 0.

Let us remark that a thorough study of densities such as δE uses methods of a dif-
ferent nature than the ones developed in this paper and shall be relegated to future
investigations.

Having explicit error terms in the asymptotic formula for hE (x, Q) enables us to
find estimates (in terms of N ) for the smallest (ordinary) prime p = pE for which
#E p(Fp) is square-free:

Theorem 1.4 Let E be an elliptic curve defined over Q and of conductor N. Assume
that E has complex multiplication by the full ring of integers OK of an imaginary
quadratic field K . Let pE be the smallest ordinary prime p for which #E p(Fp) is
square-free. If δE > 0, then:

1. Unconditionally, we have

pE = O
(

exp
(

eN 3
))

;
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2. Under GRH for the Dedekind zeta functions of the division fields of E, we have

pE = Oε

(
(log N )2+ε

)

for any 0 < ε < 1.

The implied O-constant is absolute, and the implied Oε-constant depends only on ε.

In studying the function hE (x, Q) we have been motivated by long-standing con-
jectures about the structure of E p(Fp), as explained in the following paragraphs.

In 1977 [12], S. Lang and H. Trotter formulated an elliptic curve analogue of
Artin’s primitive root conjecture, which asserts that if E is an elliptic curve defined
over Q, of conductor N , and of arithmetic rank ≥ 1, and if a is a rational point
on E of infinite order, then the density of the primes p ! N for which a(mod p)

generates E p(Fp) exists. This conjecture was investigated by R. Gupta and R. Murty
[9], who obtained an asymptotic formula for the number of ordinary primes p for
which 〈a(mod p)〉 = E p(Fp) in the case of a CM elliptic curve E and under the
assumption of GRH.

We remark that in Lang and Trotter’s conjectural statement, two requirements
on E p(Fp) are being made: it must be a cyclic group and it must be generated by
a(mod p). Therefore, a natural subproblem to consider is to show that, given an ellip-
tic curve E over Q, the density of the primes p for which E p(Fp) is cyclic exists. This
latter problem has been studied extensively by several people (J-P Serre, R Murty,
R Gupta, the author etc; see [4] and the references therein). Moreover, we remark that
if the order of E p(Fp) is prime, then the two requirements of the Lang-Trotter conjec-
ture are satisfied for any point a. This observation was first made by N. Koblitz in 1988
[10], who also formulated a conjectural asymptotic formula for the number of primes
p for which #E p(Fp) is prime. For investigations on this conjecture, see [1,5,13,24].

The study of the square-freeness of #E p(Fp) might be viewed as an intermediate
problem between the study of the cyclicity of E p(Fp) and that of the primality of
#E p(Fp). Since the very different properties of elliptic curves with and without CM
lead to different analyzes in this type of problems, in the present paper we focus our
attention only on the case of elliptic curves with CM. The more general situation of
CM elliptic curves over number fields other than Q and/or with CM by an order in an
imaginary quadratic field follows the same main steps as the current work, however
involves additional technical features that will be addressed in a separate paper. The
case of elliptic curves without CM is based on different ideas and is also relegated to
a separate paper.

Notation Throughout the paper, in addition to the notation introduced above, the
following standard notation will be used. p denotes a prime of good reduction for
E; q, # denote rational primes; k denotes a positive integer; x, y denote positive real
numbers (approaching ∞). For a complex number z ∈ C, z denotes its complex
conjugate. For a positive integer n, φ(n) denotes the Euler function of n (i.e. the
number of positive integers ≤ n and coprime to n), and ν(n) denotes the number
of distinct prime divisors of n. GL2(Z/nZ) denotes the group of 2 by 2 invertible
matrices with entries in Z/nZ, whose trace and determinant we call tr and det. For
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Square-free orders for CM elliptic curves modulo p 591

an algebraic number field K , OK denotes its ring of algebraic integers, NK/Q(·) its
norm map over Q, dK its absolute discriminant over Q, and &(·) its generalized Euler
function. We recall that if q is a nonzero prime ideal of OK and n ≥ 1, then

&(qn) := NK/Q(qn)

(
1 − 1

NK/Q(q)

)
;

this definition is extended to all the nonzero ideals of OK by multiplicativity. We
denote by q and p nonzero prime ideals of OK , and by Fp and Ep the residue field
and the reduction of E at p, respectively. We denote by gcd and lcm the greatest
common divisor and the least common multiple of two integers or two integral ideals
of a number field. For two functions f, g : D ⊆ C −→ R, with g taking positive
values, we write f (x) = O(g(x)), f (x) - g(x), or g(x) . f (x) if there exists a
positive constant M such that | f (x)| ≤ Mg(x) for any x ∈ D. In case f takes positive
values and f (x) - g(x) - f (x), we write f (x) / g(x). If D is infinite and g is
nonzero on D, we write f (x) ∼ g(x) if limx→∞

f (x)
g(x) = 1, and f (x) = o(g(x)) if

limx→∞
f (x)
g(x) = 0. We make the following convention about the implicit -,.,/

and O-constants: whenever we write -c,.c,/c or Oc for some c, we indicate that
the implicit constant M depends on c; whenever we write -,.,/ or O, we indicate
that the implicit constant M is absolute.

2 Overview of the proofs

In Sect. 1 we remarked that the main problem of this paper might be viewed as a
variant of the elliptic curve analogue of Artin’s primitive root conjecture. In 1965
[7], C. Hooley obtained a conditional (that is, under a certain GRH) proof of Artin’s
primitive root conjecture by first observing that an integer a is a primitive root modulo
a prime p if and only if p does not split completely in certain finite Galois extensions of
the cyclotomic fields Q(ζq) for any prime q &= p; then he used the simple asymptotic
sieve to sift out these primes p. Here, ζq denotes a primitive qth root of unity. The
arguments in Hooley’s proof involve the use of conditional effective versions of the
Chebotarev Density Theorem and, more significantly, sieve estimates, among which
the classical Brun–Titchmarsh Theorem. In 1977 [14,18], Serre used an elliptic curve
adaptation of Hooley’s analysis to prove, under a certain GRH, an asymptotic formula
for the number of primes p for which the reduction E p of a fixed elliptic curve E
gives a cyclic group. More precisely, he observed that E p(Fp) is cyclic if and only if
p does not split completely in the division fields Q(E[q]) (to be introduced below) for
any prime q &= p; then he used the simple asymptotic sieve to sift out these primes p.
Serre’s arguments involved again the use of the conditional effective versions of the
Chebotarev Density Theorem and the Brun–Titchmarsh Theorem.

It is natural to suspect that the problem considered in this paper could be approached
similarly, namely it could be translated into “Chebotarev conditions” and then treated
via the simple asymptotic sieve. Indeed, as a starting point we proceed along these
lines, as follows.
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We fix E an elliptic curve defined over Q, of conductor N , with complex
multiplication by the full ring of integers OK of an imaginary quadratic field K .
With the notation introduced in Sect. 1, we note that

hE (x, Q) =
∑

k

µ(k)#
{

p ≤ x : p ! N , ap &= 0, #E p(Fp) ≡ 0(mod k2)
}

, (5)

where the sum
∑

k
is over positive integers k such that k2|(p + 1 − ap) for some

p ≤ x , hence, from Hasse’s inequality, such that k ≤ 2
√

x .
Now we need to recall a few classical facts about elliptic curves. For precise ref-

erences, see [22]. For a positive integer k, let E[k] denote the group of k-division
points of E (i.e. the complex points of E of order dividing k). Let Lk := K (E[k])
be the k-division field of E over K (i.e. the field obtained by adjoining to K the x
and y coordinates of the k−division points of E). We know that Lk is a finite, Galois
extension of K , whose ramified primes are divisors of k N , and which contains the
cyclotomic field Q(ζk) (here, ζk denotes a primitive kth root of unity). We denote by
n(k) = [Lk : K ] the degree of Lk/K , by d(k) the absolute discriminant of Lk/Q,
and by Gk = Gal(Lk/K ) the Galois group of Lk/K . We recall that we can define a
natural Galois representation

φk : Gk −→ GL2(Z/kZ)

associated to E/K , which has the important properties that it is injective and

tr φk(σp) ≡ ap(mod k), (6)

det φk(σp) ≡ NK/Q(p)(mod k) (7)

for any integer k and prime p such that p ! k N , where σp denotes the Artin symbol of
p in Lk/K and ap := NK/Q(p) + 1 − #Ep(Fp). We set

Dk := {g ∈ φk(Gk) : det g + 1 − tr g ≡ 0(mod k)} . (8)

Now let p ! k N be an ordinary prime for E/Q. This means that p splits completely
in K , say as pOK = p · p. Then NK/Q(p) = p and ap = ap, and so, using (6) and
(7), we see that the condition #E p(Fp) ≡ 0(mod k2) is equivalent to

det φk2(σp) + 1 − tr φk2(σp) ≡ 0(mod k2), (9)

where σp is the Artin symbol of p in Lk2/K . Using notation (8), we obtain that

#
{

p ≤ x : p ! k N , ap &= 0, #E p(Fp) ≡ 0(mod k2)
}

∼ 1
2

#
{
p ≤ OK : NK/Q(p)

≤ x, p ! k N ,φk2(σp) ⊆ Dk2
}
; (10)

thus our problem has been translated into general Chebotarev conditions.
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Square-free orders for CM elliptic curves modulo p 593

As usual, let us note that by using the strongest effective Chebotarev Density
Theorem (to be discussed in the following section) to estimate the cardinality of
the right hand side of (10), we obtain error terms of the form Ok,N (x

1
2 log x) for each

k ≤ 2
√

x . However, from (5) and (10) we see that the expected main term for hE (x, Q)

is δE li x ∼ δE
x

log x , with

δE = 1
2

∑

k≥1

µ(k)#Dk2

[K (E[k2]) : K ] . (11)

Thus we will be able to use the Chebotarev Density Theorem only in a suitably small
range of k. This suggests that we write, instead,

hE (x, Q) = N (x, y) + M(x, y, 2
√

x) + O
(

x
(log x)B

)
(12)

for any B > 0, where

N (x, y) := 1
2

∑

k≤2
√

x
q|k⇒q≤y

µ(k)#
{
p≤OK : NK/Q(p)≤ x, p ! k N ,φk2(σp)⊆ Dk2

}
, (13)

M(x, y, 2
√

x)

:= O




∑

y<q≤2
√

x

#
{

p ≤ x : p ! q N , ap &= 0, #E p(Fp) ≡ 0(mod q2)
}


, (14)

and where y = y(x) is a positive real number, depending on x , to be chosen optimally.1

The third term comes from an effective version of (10).
Another way of splitting the summation describing hE (x, Q) (inspired by the meth-

ods developed in [6]) is

hE (x, Q) = N (x, y) + M(x, y, 2
√

x) + O
(

x1/2 log x
)
, (15)

where

N (x, y) := 1
2

∑

k≤y

µ(k)#
{
p ≤ OK : NK/Q(p) ≤ x, p ! k N ,φk2(σp) ⊆ Dk2

}
(16)

1 We recall that, throughout the paper, q denotes a rational prime.
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and

M(x, y, 2
√

x)

:= O




∑

y<k≤2
√

x

#
{

p ≤ x : p ! k N , ap &= 0, #E p(Fp) ≡ 0(mod k2)
}


. (17)

Again, y = y(x) is some parameter depending on x , to be chosen optimally. The third
term comes from an effective version of (10), under GRH.

The sums N (x, y) and N (x, y), respectively, will give the main term in our final
formula for hE (x, Q) and will be estimated using effective versions of the Chebotarev
Density Theorem. The terms M(x, y, 2

√
x) and M(x, y, 2

√
x), respectively, will

provide the error terms in our final formula and will be estimated using various sieve
methods.

We emphasize that the difficulties lie in estimating M(x, y, 2
√

x) and M(x, y,

2
√

x). For example, the classical Brun–Titchmarsh Theorem is not powerful enough
for our problem and thus new ideas are needed now.

We also remark that Hooley and Serre used splittings of type (12) in their treatments
of the Artin primitive root conjecture and of the cyclicity of E p(Fp). In our treatment
of hE (x, Q) we will use (12) to obtain an unconditional asymptotic formula, and (15)
to obtain a conditional (upon GRH) asymptotic formula, with improved error terms.2

In our analysis of hE (x, Q) we will be careful to keep track of the dependence of
all the occurring error terms on the conductor N of E . This feature will enable us
to find upper bounds in terms of N for the smallest prime p for which #E p(Fp) is
square-free, by comparing the main term with the final error terms.

3 Preliminaries

3.1 The Chebotarev Density Theorem

Let L/K be a finite Galois extension of number fields, of Galois group G. Let nL be
the degree and dL the absolute discriminant of L/Q; let nK be the degree and dK the
absolute discriminant of K/Q. We denote by ζL the Dedekind zeta function of L . Let
C be a conjugacy set in G, that is, C is a finite union of conjugacy classes of G. The set
of conjugacy classes contained in C is denoted by C̃ , and the set of conjugacy classes
contained in G is denoted by G̃. We denote by P(L/K ) the set of rational primes p
which lie below primes of K which ramify in L/K . Then we set

M(L/K ) := (#G)d1/nK
K

∏

p∈P(L/K )

p.

2 A natural splitting like (15) does not seem to work in the classical case of Artin’s primitive root conjecture.
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We define

πC (x, L/K ) := #
{
p ≤ OK : NK/Q(p) ≤ x, p unramified in L/K , σp ⊆ C

}
,

where σp is the Artin symbol of p in the extension L/K .
The Chebotarev Density Theorem asserts that, as x → ∞,

πC (x, L/K ) ∼ #C
#G

li x .

Effective versions of this theorem were first derived by J Lagarias and A Odlyzko (see
[11]). It is their versions, as refined by J-P Serre (see [19]), that we shall be using in
our proofs. We state them below.

Theorem 3.1 Assuming GRH for the Dedekind zeta function of L, we have that

πC (x, L/K ) = #C
#G

li x + O
(
(#C)x1/2nK log M(L/K )x

)
.

The implied O-constant is absolute.

If, in addition to GRH, we assume Artin’s Holomorphy Conjecture (denoted AHC),
then the error term above has a better dependence on C . Indeed, we have the following
result of [15, Cor. 3.7, p. 265]:

Theorem 3.2 Assuming GRH for the Dedekind zeta function of L, together with AHC
for the Artin L-functions of L/K , we have that

πC (x, L/K ) = #C
#G

li x + O
(
(#C)1/2x1/2nK log M(L/K )x

)
.

The implied O-constant is absolute.

Finally, we have the following unconditional version:

Theorem 3.3 There exist positive constants A and c, with A effective and c absolute,
such that, if

√
log x
nL

≥ c max
{

log dL , d1/nL
L

}
,

then

πC (x, L/K ) = #C
#G

li x + O

((
#C̃

)
x exp

(

−A

√
log x
nL

))

,

where, we recall, C̃ denotes the set of conjugacy classes contained in C. The implied
O-constant is absolute.
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The following result is often very helpful in estimating the error terms in the effective
Chebotarev Density Theorem. Its proof is given in [19, p. 130] and is based on a result
of Hensel.

Lemma 3.4 Let L/K be a finite Galois extension of number fields. Using the notation
introduced above, we have that

log dL ≤ #G log dK + nL

(
1 − 1

#G

) ∑

p∈P(L/K )

log p + nL log #G.

3.2 The Brun–Titchmarsh Theorem

In our analysis of hE (x, Q) we will need information about primes in arithmetic
progressions, such as the upper bounds provided by the Brun–Titchmarsh Theorem
and its generalizations. We recall them below.

Theorem 3.5 (The Brun–Titchmarsh Theorem) Let k ≥ 1 and a be fixed coprime
integers. For any real number x with x > k we have

π(x, k, a) - x
φ(k) log x

k
,

where

π(x, k, a) := # {p ≤ x : p ≡ a(mod k)}.

By using the sieve of Eratosthenes, we obtain the following weak analogue of
Theorem 3.5 for imaginary quadratic fields (for a proof, see [3, pp. 2655–2657]).

Lemma 3.6 Let x > 0 and let D, k be fixed positive integers with k <
√

x − 1. Then

S1
k := #

{
p ≤ x : p = (αk + 1)2 + Dβ2k2 for some α,β ∈ Z

}

= O

((√
x

k
+ 1

) √
x log log x

k
√

D log
√

x−1
k

)

;

S2
k := #

{
p ≤ x : p =

(α

2
k + 1

)2
+ D

β2

4
k2 for some α,β ∈ Z

}

= O

((√
x

k
+ 1

) √
x log log x

k
√

D log
√

x−1
k

)

.

Remark 3.7 With notation as in Lemma 3.6, we see that for any k, x , and for each
1 ≤ i ≤ 2,

Si
k -

√
x

k
√

D

(
2
√

x
k

+ 1
)

.

123



Square-free orders for CM elliptic curves modulo p 597

The sieve argument is invoked for obtaining a saving of log log x
log x in these estimates.

A general number field analogue of Theorem 3.5 was obtained by Schaal [17] as
an application of the large sieve for number fields, which generalizes a large sieve
inequality of Bombieri and Davenport and improves a prior number field version due
to Huxley.

Theorem 3.8 Let K be a number field of degree nK and absolute discriminant dK ,
having r1 real embeddings into C and 2r2 complex conjugate embeddings into C. Let
αK be the residue of the Dedekind zeta function of K at s = 1. Let I be an integral
ideal of K and let β ∈ OK be such that gcd{β, I } = 1. We take M1, . . . , Mr1 ∈ [0,∞)

and P1, . . . , PnK ∈ (0,∞) with Pl = Pl+r2 for l = r1 + 1, . . . , r1 + r2. For ω ∈ OK
we denote by ω(l) its lth conjugate. We consider the set

S := {ω ∈ OK : ω ≡ β(mod I ), (ω) a prime ideal, and ω satisfies (C)},

where conditions (C) are as follows:

Ml ≤ ω(l) ≤ Ml + Pl , ∀ 1 ≤ l ≤ r1,

∣∣∣ω(l)
∣∣∣ ≤ Pl , ∀ r1 + 1 ≤ l ≤ nK .

If P := P1 . . . PnK ≥ 2 and NK/Q(I ) ≤ P
(log P)2r+2/nK

, with r := r1 + r2 − 1, then

#S ≤ 23r2+1

αK
√

dK
· P

&(I ) log P
NK/Q(I )

{

1 + OK

((
log

P
NK/Q(I )

)−1/nK
)}

,

where the OK -constant above depends on K and is independent of I .

3.3 Division fields of CM elliptic curves

Our proofs of Theorems 1.1 and 1.2 will also rely heavily on the properties of the
division fields of CM elliptic curves. We recall them below.

3.3.1 Generalities

Proposition 3.9 Let E be an elliptic curve defined over a field K and of conductor N.
We keep the notation introduced in Sects. 1 and 2. Then for any positive integer k, we
have the following:

1. Lk/K is a finite Galois extension for which Gal(Lk/K ) ≤ GL2(Z/kZ). Conse-
quently,

n(k) ≤ k4
∏

q|k

(
1 − 1

q

) (
1 − 1

q2

)
≤ k4;
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2. the ramified primes of Lk/Q are divisors of k N ;
3. the cyclotomic field Q(ζk) is contained in Lk; therefore

φ(k)|n(k)

and a rational prime p which splits completely in Lk satisfies p ≡ 1(mod k).

For a proof, we refer the reader to [22, pp. 90, 98, 179].
Proposition 3.9 provides us with upper and lower bounds for the degree n(k) of

the extension Lk/K . In the case of a CM elliptic curve we have the following more
precise estimates:

Proposition 3.10 Let E be a CM elliptic curve defined over Q, with complex multi-
plication by the full ring of integers OK of an imaginary quadratic field K .

1. For any positive integer k ≥ 3, we have

n(k) / &(kOK ). (18)

In particular, from (18) we deduce that

φ(k)2 - n(k) - k2. (19)

2. Let I be a nonzero ideal of OK such that gcd{I, 6N } = 1, and let E[I ] denote
the group of I -division points of E/K . Then, by adjoining to K the x and y
coordinates of the points of E[I ], we obtain a finite Galois extension of K which is
unramified outside 6N I , totally ramified at the primes dividing I , and has Galois
group equal to the unit group (OK /I )×. For an arbitrary nonzero ideal I , we have
that Gal(K (E[I ])/K ) embeds into (OK /I )×, hence is abelian.

This proposition is a consequence of the theory of complex multiplication; the reader
may consult [23, Sect. 5 of Chap. II], [8] or [16, Sect. 5] for a proof.

3.3.2 Estimates for the sizes of the conjugacy sets Dk2

In order to find an asymptotic formula for hE (x, Q), we will need estimates for the
sizes of the conjugacy sets Dk2 defined in Sect. 2. To obtain such estimates, it is useful
to have an explicit realization of the Galois groups Gk2 = Gal(K (E[k2])/K ) as matrix
groups.

Lemma 3.11 Let E be a CM elliptic curve defined over Q, with complex multiplication
by the full ring of integers OK of an imaginary quadratic field K = Q(

√−D), where
D is positive and square-free. Let q be an odd rational prime and n a positive integer.

1. If q splits completely in K/Q, then

Gal
(
K

(
E

[
qn])

/K
)
≤

{(
a + b

√−D 0
0 a + b

√−D

)
∈ GL2

(
Z/qnZ

)}
. (20)
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2. If q is inert in K/Q, then

Gal
(
K

(
E

[
qn])

/K
)
≤

{(
a −bD
b a

)
∈ GL2

(
Z/qnZ

)}
(21)

in the case −D ≡ 2, 3(mod 4), and

Gal
(
K

(
E

[
qn])

/K
)
≤

{(
a −b D+1

4
b a + b

)
∈ GL2

(
Z/qnZ

)}
(22)

in the case −D ≡ 1(mod 4).

Proof First we recall that, since E has complex multiplication by OK , we have an
isomorphism

C
OK

−→ E(C)

z 4→ (℘ (z),℘′(z))

and a commutative diagram

C
OK

φα−−−−→ C
OK=
=

E(C)
[α]−−−−→ E(C)

(see [21, p. 105, Proposition 4.11] and [23, p. 97]), where, for any α ∈ OK and z ∈ C,

φα(z) = αz,

and ℘ is the Weierstrass function defined by

℘ (z) = 1
z2 +

∑

ω∈OK
ω &=0

(
1

(z − ω)2 − 1
ω2

)
.

Moreover, all the endomorphisms of E(C) are of the form [α] defined above, for some
α ∈ OK .

Let us briefly observe that

℘ (z) = ℘ (z) and ℘′(z) = ℘′(z)

and that ℘ (z) is an even function, while its derivative ℘′(z) is an odd function.
In what follows, we assume that −D ≡ 2, 3(mod 4), thus OK = Z[√−D]. The

proofs in the case −D ≡ 1(mod 4) are similar.
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1. If q splits completely in K , then, on one hand, the Legendre symbol
(

−D
q

)
of

−D modulo q is 1; on the other hand, qOK = q1q2 for some distinct nonzero prime
ideals q1, q2 of OK with NK/Q(q1) = NK/Q(q2) = q, which we write as

q1 = βOK , q2 = βOK

for some 0 &= β ∈ OK . We also observe that

E
[
qn]

= E
[
qn

1
]
⊕ E

[
qn

2
]
,

where

E
[
qn

1
]

: =
{

P ∈ E(Q) : [βn]P = O
}
,

E
[
qn

2
]

:=
{

P ∈ E(Q) : [βn]P = O
}

.

But E
[
qn]

7 Z/qnZ ⊕ Z/qnZ, hence E
[
qn

1

]
and E

[
qn

2

]
must be cyclic Z/qnZ-

modules. We choose

P1 :=
(

℘

(
1
βn

)
,℘′

(
1
βn

))

as a Z/qnZ-basis for E
[
qn

1

]
and

P2 :=
(

℘

(
1

β
n

)
,℘′

(
1

β
n

))

as a Z/qnZ-basis for E
[
qn

2

]
; thus {P1, P2} is a Z/qnZ-basis for E

[
qn]

.
With respect to this basis, the automorphisms of E

[
qn]

can be embedded into

{(
a + b

√−D 0
0 a + b

√−D

)
∈ GL2

(
Z/qnZ

)}
,

where we are using that
(

−D
q

)
= 1. Part 1 of the lemma follows.

2. Now let us assume that q is inert in K = Q(
√−D), that is, (q) is a prime ideal

of OK and
(

−D
q

)
= −1.

We choose

P1 :=
(
℘

(
1

qn

)
,℘′

(
1

qn

))
,

P2 :=
(
℘

(√−D
qn

)
,℘′

(√−D
qn

))
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as a Z/qnZ-basis for E
[
qn]

. With respect to this basis, the automorphisms of E
[
qn]

can be embedded into
{(

a −bD

b a

)

∈ GL2
(
Z/qnZ

)
}

.

Indeed, for α = a + b
√−D ∈ OK we have

[α]P1 =
(

℘

(
α

qn

)
,℘′

(
α

qn

))
= a P1 + bP2,

[α]P2 =
(

℘

(
α
√−D
qn

)

,℘′
(

α
√−D
qn

))

= −bD P1 + a P2.

Part 2 of the lemma follows. 89
Lemma 3.12 Let E be a CM elliptic curve defined over Q, with complex multiplication
by the full ring of integers OK of an imaginary quadratic field K = Q(

√−D), where
D is positive and square-free. Let q be an odd rational prime, unramified in K . Let

Dq2 =
{

g ∈ Gal(K (E[q2])/K ) : det g + 1 − tr g ≡ 0
(

mod q2
)}

,

where we view Gal(K (E[q2])/K ) as a subgroup of GL2(Z/q2Z) via the representa-
tion φq2 , as described in Sect. 2. Then #Dq2 ≤ q2.

Proof First let us assume that q splits completely in K/Q. Then if g ∈ Dq2 , we have

g =
(

a + qa′ 0

0 a + qa′

)

for some 1 ≤ a ≤ q − 1, 0 ≤ a′ ≤ q − 1, chosen such that

det g + 1 − tr g ≡ 0
(

mod q2
)
. (23)

This implies that a − 1 ≡ 0(mod q), a contradiction.
Now let us assume that q is inert in K = Q(

√−D), hence we have
(

−D
q

)
= −1.

If g ∈ Dq2 and −D ≡ 2, 3(mod 4), then

g =
(

a + qa′ −(b + qb′)D

b + qb′ a + qa′

)

for some 0 ≤ a, b ≤ q − 1, 0 ≤ a′, b′ ≤ q − 1, chosen such that

det g + 1 − tr g ≡ 0
(

mod q2
)
. (24)
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Condition (24) implies that

(a − 1)2 + b2 D ≡ 0(mod q), (25)

and so, if b &≡ 0(mod q), −D is a square modulo q, a contradiction. If b ≡ 0(mod q),
then condition (25) implies that a ≡ 1(mod q), thus

g =
(

1 + qa′ −qb′D

q ′ 1 + qa′

)

for some 0 ≤ a′, b′ ≤ q−1. Since condition (24) is satisfied for any 0 ≤ a′, b′ ≤ q−1,
we deduce that there are q2 such matrices g.

We proceed similarly if −D ≡ 1(mod 4) and obtain at most q2 matrices g ∈ Dq2 .
This completes the proof of the lemma. 89
We obtain the following immediate consequence:

Corollary 3.13 Under the hypotheses of Lemma 3.12 and for any odd positive square-
free integer k composed of primes which are unramified in K , we have #Dk2 ≤ k2.

3.4 Characterization of the square-freeness of #E p(Fp)

In this section we describe an important characterization of the primes p for which
#E p(Fp) is square-free in the case that the elliptic curve E is with CM. We start with
two standard results:

Lemma 3.14 Let E be a CM elliptic curve defined over Q and with complex mul-
tiplication by the full ring of integers OK of an imaginary quadratic field K . Let p
be a prime of good ordinary reduction for E, and let pOK = (πp)(π p) be its prime
factorization in K . Then Q(πp) = K .

Lemma 3.15 Let E be a CM elliptic curve defined over Q and with complex mul-
tiplication by the full ring of integers OK of an imaginary quadratic field K . Let p
be a prime of good ordinary reduction for E, and let pOK = (πp)(π p) be its prime
factorization in K . Let I be a nonzero ideal of OK such that πp ! I . Then πp splits
completely in K (E[I ])/K if and only if πp ≡ 1(mod I ).

For proofs of these lemmas, the reader is referred to Sect. 2.2 of [3].
As an immediate consequence of Lemma 3.15 and Theorem 3.8, we have:

Lemma 3.16 Let E be a CM elliptic curve defined over Q and with complex multi-
plication by the full ring of integers OK of an imaginary quadratic field K . Let x > 2
and let I be a nonzero ideal of OK with NK/Q(I ) ≤ x

log x . Then

#{p ≤ x : ap &= 0,πp splits completely in K (E[I ])/K }

- x
&(I ) log x

NK/Q(I )



1 + 1
√

log x
NK/Q(I )



 .
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The main result of this section is:

Lemma 3.17 Let E be a CM elliptic curve defined over Q, of conductor N and with
complex multiplication by the full ring of integers OK of an imaginary quadratic field
K . Let p, q be primes such that p ! q N with p ≥ 5. We assume that p has ordinary
reduction for E, and we let pOK = (πp)(π p) be its prime factorization in K .

1. If q is inert in K , then q2|#E p(Fp) if and only if p splits completely in K (E[q]).
2. If q ramifies in K , then q2|#E p(Fp) if and only if p splits completely in K (E[q]).
3. If q splits in K , say as qOK = qq for distinct complex conjugate prime ideals q, q

of OK , then q2|#E p(Fp) if and only if πp splits completely in one of K (E[q]),
K

(
E

[
q2]), or K

(
E

[
q2]).

Proof Throughout the proof, we will be using the two lemmas recalled above. Let us
consider each of the three situations for q.

1. If q is inert in K , we write (q) = q for some prime ideal q of K with
NK/Q(q) = q2.

“⇐” We assume that p splits completely in K (E[q]). This means that (πp) splits
completely in K (E[q]), hence q|(πp−1) in Q(πp) = K . By taking the norm NK/Q(·),
we obtain that q2|p + 1 − ap = #E p(Fp).
“⇒” We assume that q2|#E p(Fp), which is equivalent to q2|(πp − 1)(π p − 1) in K .
Thus

(πp − 1)(π p − 1) = q2(α)

for some α ∈ OK (where we are also using that K has class number 1). It is easy to
see now that q|(πp −1), hence that πp splits completely in K (E[q]). This also implies
that π p splits completely in K (E[q]) = K (E[q]). Thus, recalling that p splits in K
as (p) = (πp)(π p), we obtain that p splits completely in K (E[q]) = K (E[q]).
2. If q ramifies in K , we write (q) = q2 for some prime ideal q of OK with
NK/Q(q) = q.
“⇐” We assume that p splits completely in K (E[q]). As before, this means that
πp ≡ 1(mod q), hence that q2|#E p(Fp).
“⇒” We assume that q2|#E p(Fp), hence that

(πp − 1)(π p − 1) = q4(α)

for some α ∈ OK . This tells us that q2|(πp − 1), hence that πp splits completely in
K

(
E

[
q2]). Consequently, π p splits completely in K

(
E

[
q2]) = K

(
E

[
q2]), and so

p must split completely in K
(
E

[
q2]) = K (E[q]).

3. If q splits completely in K , we write (q) = qq for distinct complex conjugate prime
ideals q, q of OK with NK/Q(q) = NK/Q (q) = q.
“⇐” As in parts 1 and 2, if πp splits completely in one of K (E[q]), K

(
E

[
q2]),

or K
(
E

[
q2]), then πp ≡ 1(mod q), or πp ≡ 1

(
mod q2), or πp ≡ 1

(
mod q2),

respectively. By taking NK/Q(·), we obtain that q2|#E p(Fp).
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“⇒” Finally, we assume that q2|#E p(Fp), which implies that

(πp − 1)(π p − 1) = q2q2(α)

for some α ∈ OK . Then we must have qq|(πp − 1), or q2|(πp − 1), or q2|(πp − 1),
which tells us that πp splits completely in K

(
E

[
qq

])
= K (E[q]), or K

(
E

[
q2]), or

K
(
E

[
q2]), respectively. This completes the proof of the lemma. 89

As an immediate consequence of Lemma 3.17, we have:

Corollary 3.18 Let E be a CM elliptic curve defined over Q, of conductor N and with
complex multiplication by the full ring of integers OK of an imaginary quadratic field
K . Let p ≥ 5 be a prime of ordinary good reduction for E. Write pOK = (πp)(π p)

as before. Then #E p(Fp) is square-free if and only if πp does not split completely in
any of: K (E[q]) for any prime ideal q of K lying over a rational prime which is inert
in K ; K

(
E

[
q2]) for any prime ideal q of K lying over a rational prime which ramifies

in K ; K
(
E

[
qq

])
, K

(
E

[
q2]) and K

(
E

[
q2]) for any prime ideal q of K lying over

a rational prime which splits completely in K .

4 Proof of Theorem 1.1

To prove Theorem 1.1, we follow the strategy discussed in Sect. 2. More precisely, we
use (12) and analyze each of the terms N (x, y) and M

(
x, y, 2

√
x
)
.

4.1 Estimate for N (x, y)

Following (13), we write

N (x, y) = 1
2

∑

k

′
µ(k)#

{
p ≤ OK : NK/Q(p) ≤ x, p ! k N ,φk2(σp) ⊆ Dk2

}
,

where the dash on the summation indicates that we sum over positive integers k ≤ 2
√

x
whose prime divisors are ≤ y. We will use the unconditional effective Chebotarev
Density Theorem 3.3 to estimate this sum.

By Lemma 3.4 and part 2 of Proposition 3.9 we obtain that

n
(

k2
) (

log d
(

k2
))2

- n
(

k2
)3 (

log
(

n
(

k2
)

k N
))2

and

n
(

k2
)

d
(

k2
)2/n

(
k2)

- n
(

k2
)3

k2 N 2,
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thus

max
{

n
(

k2
) (

log d
(

k2
))2

, n
(

k2
)

d
(

k2
)2/n

(
k2)}

- k14 N 2.

In order to apply Theorem 3.3 we need k14 N 2 ≤ log x , and since k ≤ exp(2y), this
condition is ensured if we choose

y := 1
28

(log log x − 2 log N ). (26)

We obtain

N (x, y) = 1
2

∑

k

′ µ(k)#Dk2

n
(
k2

) li x + O

(
∑

k

′
#

(
D̃k2

)
x exp

(

−A

√
log x

n
(
k2

)
))

(27)

for some positive effective constant A, where D̃k2 denotes the set of conjugacy classes
contained in Dk2 . We note that, by using Proposition 3.10,

#
(

D̃k2

)
≤ #Dk2 ≤ n

(
k2

)
≤ k4

for any k ≥ 3. Also, since there are at most 2y - (log x)1/28

N 1/28 positive square-free
integers k with prime divisors < y, and since k ≤ exp(2y), the error term in the above
estimates becomes

O

(
∑

k

′
k4x exp

(

−A

√
log x

n
(
k2

)
))

= O
(

exp(9y)
x

(log x)B′

)

= O
(

x
N 9/28(log x)B

)
(28)

for any positive constants B ′ and B.

4.2 Estimate for M
(
x, y, 2

√
x
)

To estimate M
(
x, y, 2

√
x
)
, we make use of Lemma 3.17.3

More precisely, we write

M
(
x, y, 2

√
x
)

= Mi
(
x, y, 2

√
x
)
+ Mr

(
x, y, 2

√
x
)
+ Ms

(
x, y, 2

√
x
)
, (29)

3 We emphasize that our unconditional treatment of M(x, y, 2
√

x) is possible thanks to Lemmas 3.14
and 3.17, which are results specific to elliptic curves with CM. An unconditional treatment for the same
quantity in the case of an elliptic curve E/Q without CM would require a Bombieri–Vinogradov type result
for πDq2 (x, Q(E[q2])/Q), where q lies in a suitably large range depending on x , and such a result is not

yet known.
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where

Mi
(
x, y, 2

√
x
)

:=
∑

y<q≤2
√

x
q inert in K

#
{

p ≤ x : ap &= 0, q2|#E p(Fp)
}
,

Mr
(
x, y, 2

√
x
)

:=
∑

y<q≤2
√

x
q ramified in K

#
{

p ≤ x : ap &= 0, q2|#E p(Fp)
}
,

Ms
(
x, y, 2

√
x
)

:=
∑

y<q≤2
√

x
q split in K

#
{

p ≤ x : ap &= 0, q2|#E p(Fp)
}
.

We estimate each of these three sums separately.

Estimate for Mi
(
x, y, 2

√
x
)
. By part 1 of Lemma 3.17 we have

Mi
(
x, y, 2

√
x
)

=
∑

y<q≤2
√

x
q inert in K

# {p ≤ x : p splits completely in K (E[q])}.

The condition that p splits completely in K (E[q]) is equivalent to πp ≡ 1(mod q) in
OK , where pOK = (πp)(π p), as before. This implies that

Mi
(
x, y, 2

√
x
)
≤

∑

y<q≤2
√

x
q inert in K

Sq ,

where Sq = S1
q if −D ≡ 2, 3(mod 4) and Sq = S2

q if −D ≡ 1(mod 4), and where
S1

q , S2
q have been defined in Lemma 3.6. We split the above sum into two parts, accord-

ing to whether y < q ≤ log x or log x < q ≤ 2
√

x , and use the “Eratosthenes esti-
mate” given by Lemma 3.6 for the first range, and the elementary estimate given by
Remark 3.7 for the latter range. We obtain

Mi
(
x, y, 2

√
x
)
- x log log x√

D

∑

y<q≤log x

1

q2 log
√

x−1
q

+
√

x log log x√
D

∑

y<q≤log x

1

q log
√

x−1
q

+ x√
D

∑

log x<q≤2
√

x

1
q2 +

√
x√
D

∑

log x<q≤2
√

x

1
q

- x log log x
y(log x)(log y)

+
√

x(log log x)(log log log x)

log x

+ x
(log x)(log log x)

+ √
x log log log x .
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With our choice of y given in (26), this becomes

Mi
(
x, y, 2

√
x
)

= O

(
x

(log x)(log log log x
N 2 )

· log log x

log log x
N 2

)

. (30)

Note that D belongs to a finite number of integers, thus the O-constant above is
absolute.

Estimate for Mr
(
x, y, 2

√
x
)
. We count ordinary primes p ≤ x with q2|(p+1−ap)

for some prime y < q ≤ 2
√

x which ramifies in Q(πp) = K = Q(
√−D), hence

which divides the discriminant of K . Since y / log log x , we obtain that, for x .
exp exp D,

Mr
(
x, y, 2

√
x
)

= 0. (31)

Estimate for Ms
(
x, y, 2

√
x
)
. To estimate Ms

(
x, y, 2

√
x
)

we have, by part 3 of
Lemma 3.17, that

Ms
(
x, y, 2

√
x
)
≤

∑

y<q≤2
√

x

Sq

+
∑

y<q≤2
√

x
(q)=qq,q&=q

#
{

p≤ x : p splits in K and πp splits in K
(
E

[
q2

])}
,

where by “splits” we mean that it splits completely. The first sum is estimated in the
same way as Mi

(
x, y, 2

√
x
)
. We obtain

∑

y<q≤2
√

x

Sq = O



 x

(log x)
(

log log log x
N 2

) · log log x

log log x
N 2



.

For the second sum we observe that the condition that πp splits completely in
K

(
E

[
q2]) implies that

(πp − 1) = q2(α)

for some α ∈ OK . We also observe that

#

{

(α) : NK/Q(α) = NK/Q(πp − 1)

NK/Q
(
q2

) ≤
(√

x + 1
q

)2
}

= O
((√

x + 1
q

+ 1
) √

x + 1

q
√

D

)

= O
((√

x
q

+ 1
) √

x
q

)
. (32)
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Now, similarly to our estimates for Mi
(
x, y, 2

√
x
)
, we write

∑

y<q≤2
√

x
(q)=qq,q&=q

#
{

p ≤ x : p splits in K and πp splits in K
(

E
[
q2

])}

-
∑

y<q≤log x
(q)=qq,q&=q

∑

p≤x
πp≡1

(
mod q2)

1 +
∑

log x<q≤2
√

x
(q)=qq,q&=q

∑

p≤x
πp≡1

(
mod q2)

1,

and we use the “Schaal estimate” given by Theorem 3.8 (or Lemma 3.16) for the first
sum, and the elementary estimate given by (32) for the second sum. We obtain:

∑

y<q≤log x
(q)=qq,q&=q

∑

p≤x
πp≡1

(
mod q2)

1 -
∑

y<q≤log x

x
q2 log x

q2



1 + 1
√

log x
q2





- x
y(log x)(log y)

;

∑

log x<q≤2
√

x
(q)=qq,q&=q

∑

p≤x
πp≡1

(
mod q2)

1 -
∑

log x<q≤2
√

x

((√
x + 1
q

)2

+
√

x + 1
q

)

- x
(log x)(log log x)

+ √
x log log x .

These estimates and our choice of y given in (26) lead to

Ms
(
x, y, 2

√
x
)

= O

(
x

(log x)(log log log x
N 2 )

· log log x

log log x
N 2

)

. (33)

4.3 Putting things together

Using (12), (27)–(31), and (33), we obtain that

hE (x, Q) = 1
2

∑

k

′ µ(k)#Dk2

n
(
k2

) li x + O
(

x
N 9/28(log x)B

)

+ O

(
x

(log x)(log log log x
N 2 )

· log log x

log log x
N 2

)

for any positive constant B.

It remains to analyze the term 1
2

∑
k

′ µ(k)#Dk2

n(k2)
li x . We recall that for odd square-

free positive integers k composed of primes which are unramified in K we have
#Dk2 = O(k2) (see Corollary 3.13). For k equal to 2 or composed of ramified primes
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of K we obtain that #Dk2 is bounded absolutely. Hence

1
2




∑

k≥1

µ(k)#Dk2

n
(
k2

) −
∑

k

′ µ(k)#Dk2

n
(
k2

)



 li x - x
log x

∑

q>y

∑

t≥1

q2t2

q4
(
t2

)7/2

- x
y(log y)(log x)

.

Using (26) in this estimate, we obtain that

hE (x, Q) = 1
2

∑

k≥1

µ(k)#Dk2

n
(
k2

) li x + O
(

x
N 9/28(log x)B

)

+ O

(
x

(log x)(log log log x
N 2 )

· log log x

log log x
N 2

)

.

This completes the proof of Theorem 1.1.

5 Proof of Theorem 1.2

We consider the problem of improving the error terms in the asymptotic formula for
hE (x, Q) obtained in Theorem 1.1. This time we shall use splitting (15) introduced in
Sect. 2 and assume GRH.

We estimate N (x, y) similarly to how we estimated N (x, y) in Theorem 1.1; now,
however, we use the conditional Chebotarev Density Theorem 3.2. Note that since the
extensions Lk2/K are abelian, AHC holds and we do not have it as an extra assumption.
We obtain that

N (x, y) = 1
2

∑

k≤y

µ(k)#Dk2

n
(
k2

) li x +
∑

k≤y

O
(

kx1/2(log(k N x))
)

= 1
2

∑

k≤y

µ(k)#Dk2

n
(
k2

) li x + O
(

y2x1/2(log(N x))
)
, (34)

where we have also used Lemma 3.4, Proposition 3.9 and Corollary 3.13.
The sum M(x, y, 2

√
x) is estimated along similar lines as the sum M(x, y, 2

√
x).

The details follow.
We write each index k as

k = ki kr ks,

where ki is composed of inert primes of K , kr is composed of ramified primes of K ,
and ks is composed of primes which split completely in K . By using Lemma 3.17
we obtain that, for any square-free integer k such that k2|#E p(Fp) for some ordinary
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prime p, we have that p splits completely in K and

(πp − 1) = ki kr I (ks) · (α) (35)

for some α ∈ OK , where I (ks) is an ideal of OK obtained by taking the product
of the ideals qq, q2, or q2 according to whether πp splits completely in K

(
E

[
qq

])
,

K
(
E

[
q2]), or K

(
E

[
q2]), respectively, with q running over the prime ideals of K

lying above prime divisors q of ks . We note that there are 3ν(ks ) possible such ideals
I (ks). We also remark that for α as in (35) we have

NK/Q(α) = NK/Q(πp − 1)

NK/Q(ki kr I (ks))
≤

(√
p + 1

)2

k2 ≤
(√

x + 1
)2

k2 ,

so that the number of possible α is

O
((√

x + 1
k

+ 1
) √

x + 1

k
√

D

)
O

((√
x

k
+ 1

) √
x

k

)
.

The above remarks imply that

M
(
x, y, 2

√
x
)

≤
∑

y<k≤2
√

x
k square-free

k=ki kr ks

∑

p≤x
ap &=0

(πp−1)=ki kr I (ks )(α)

1

-
∑

y<k≤2
√

x
k square-free

k=ki kr ks

3ν(ks )

(
x

k2
i k2

r k2
s

+
√

x
ki kr ks

)

-
∑

ks≤2
√

x

∑

y
ks

<ki ≤2
√

x

3ν(ks )

(
x

k2
i k2

s
+

√
x

ki ks

)

-
∑

ks≤2
√

x

3ν(ks )

(
x

yks
+

√
x

ks
log x

)

- x
y
(log x)3 + √

x(log x)4, (36)

where we have also used that
∑

n≤x

1
n

= log x + O(1) and

∑

k≤x

cν(k) - x(log x)c−1. (37)
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Putting (15), (34), and (36) together gives

hE (x, Q) = 1
2

∑

k<y

µ(k)#Dk2

n
(
k2

) li x + O
(

y2x1/2(log(N x))
)

+ O
(

x
y
(log x)3

)
+ O

(
x1/2(log x)3

)
.

We choose y such that y2x1/2(log(N x)) = x
y (log x)3, that is,

y := x1/6 log x
(log(N x))1/3 .

Then

hE (x, Q) =
∑

k≤y

µ(k)#Dk2

n
(
k2

) li x + O
(

x5/6(log x)2(log(N x))1/3
)
. (38)

To handle the tail 1
2

∑
k>y

µ(k)#Dk2

n(k2)
li x , we use again our estimates for #Dk2 and

n(k2), as well as (37). We obtain, by partial summation, that

∑

k>y

µ(k)#Dk2

n
(
k2

) li x - x
log x

∑

k>y

k22ν(k)

k4

- x log y
y log x

- x5/6(log x)−1(log(N x))1/3. (39)

From (38) and (39) we now deduce the asymptotic formula claimed in the statement
of Theorem 1.2.

6 The positivity of the density δE

In this section we prove Theorem 1.3 about the positivity of the density δE . Before
proceeding any further, let us remark that since we are in the CM case, the order of the
torsion subgroup E(Q)tors of E(Q) can be 1, 2, 3, 4, or 6. Hence if #E(Q)tors = 4, then
4|#E p(Fp) for all but finitely many primes p, and so δE = 0. This clearly happens if
Q(E[2]) = Q. Thus a necessary condition for the positivity of δE is that Q(E[2]) &= Q.
Now let us also find a sufficient condition. Our arguments will be similar to the ones
used in [9, pp. 28–32].

From Corollary 3.18 we see that

δE = 1
2

∑

a,k

µ(a)µ(k)

[K (E[a2])K (E[k]) : K ] , (40)
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where the sum is over square-free ideals a of OK composed of first degree unramified
prime ideals, and over square-free positive integers k.

We write each a and k as above in the form

a = a1b, k = k1b,

where a1, b are square-free ideals of OK such that gcd{a1, (6N )} = 1 and b|(6N ),
and k1, b are positive square-free integers such that gcd{k1, 6N } = 1 and b|6N .

With this notation, we make the following important remarks:

[K (E[a2])K (E[k]) : K ]=[K (E[a2
1])K (E[k1]) : K ] · [K (E[b2])K (E[b]) : K ],

(41)

[K (E[a2
1])K (E[k1]) : K ]= [K (E[a2

1]) : K ] · [K (E[k1]) : K ]
&(gcd{a1, (k1)})

, (42)

where, we recall, &(·) denotes the generalized Euler function of K . Equation (41) is
derived from the relation

[K (E[a2])K (E[k]) : K (E[b2])K (E[b])] = [K (E[a2
1])K (E[k1]) : K ],

which is a straightforward consequence of the fact that for prime ideals q of OK
dividing lcm{a2

1, (k1)} we have that K (E[q2]) is an extension of K in which q ramifies
totally, and in which primes not dividing 6Nq do not ramify (see Proposition 3.10). The
proof of (42) is also based on Proposition 3.10, as follows. Since a1 and k1 are coprime
to (6N ) and 6N , respectively, so is lcm{a2

1, (k1)}. Thus the corresponding Galois
groups of K (E[a2

1])/K , K (E[k1])/K , and K (E[lcm{a2
1, k1}])/K are isomorphic to

the unit groups (OK /a2
1)

×, (OK /k1OK )×, and (OK / lcm{a2
1, (k1)})×, respectively.

Moreover, &(·) is multiplicative, hence we can write

[K (E[a2
1])K (E[k1]) : K ] = [K (E[lcm{a2

1, (k1)}]) : K ]
= &(lcm{a2

1, (k1)})

= &(a2
1)&((k1))

&(gcd{a2
1, (k1)})

= [K (E[a2
1]) : K ][K (E[k1]) : K ]
&(gcd{a1, k1})

.

Using (41) we can now write

δE = 1
2

∑

a1,k1

µ(a1)µ(k1)

[K (E[a2
1])K (E[k1]) : K ]

∑

b,b

µ(b)µ(b)

[K (E[b2])K (E[b]) : K ] =: 1
2
δ1δ2. (43)

It remains to analyze the positivity of each of δ1 and δ2.

123



Square-free orders for CM elliptic curves modulo p 613

By using (42), we write

δ1 =
∑

a1,k1

µ(a1)µ(k1)&(gcd{a1, (k1)})
[K (E[a2

1]) : K ][K (E[k1]) : K ] .

Since gcd{a1, (6N )} = gcd{k1, 6N } = 1, by Proposition 3.10 all the functions
involved in the expression of δ1 are multiplicative. Therefore we can rewrite the sum
as an Euler product, and show that each of the factors involved is positive.

First we write

δ1 =
∑

k1

µ(k1)

[K (E[k1]) : K ]
∏

q

(
1 − &(gcd{q, (k1)})

[K (E[q2]) : K ]

)
,

where the inner product is over first degree unramified prime ideals q of OK , coprime
to (6N ). In the following discussion on δ1, the meaning of q will remain the same.
By using once again that for q ! (6N ) we have [K (E[q2]) : K ] = &(q2), and by
rearranging the factors, we obtain

δ1 =
∏

q

(
1 − 1

&(q2)

) ∑

k1

µ(k1)

[K (E[k1]) : K ]
∏

q|k1

(
1 − 1

NK/Q(q)

) (
1 − 1

&(q2)

)−1

=
∏

q!6N
q inert in K

(
1 − 1

q2(q2 − 1)

)(
1 − 1

q2 − 1

)

×
∏

q!6N
q splits in K

(
1 − 1

q(q − 1)

) (
1 − q − 1

q2 − q − 1

)
.

From here it is clear that δ1 > 0.
Now we analyze δ2. Let θ be the density of the primes p of K not splitting completely

in any of K (E[q]), where q is a rational prime of second degree in K and dividing
6N , and in any of K (E[q]), where q is a prime ideal of OK , dividing (6N ), and of
first degree. Since δ2 is the density of primes p of K not splitting completely in any
of K (E[q2]), where q is a prime ideal of K of first degree and dividing (6N ), and in
any of K (E[q]), where q is a rational prime dividing 6N , we have

δ2 ≥ θ . (44)

It was shown in [9, pp. 30] that

θ ≥
∏

q|(6N )

(
1 − w(q)

&(q)

)
, (45)
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where the product is over prime ideal divisors q of (6N ) and w(q) denotes the number
of inequivalent units modulo q. Thus, as in [9, p. 30], θ > 0 if 2 and 3 are inert in K ,
which happens if K &= Q(

√−1) or K &= Q(
√−3).

Along the same lines as in [9, p. 30–31] we also have that δ2 > 0 if K = Q(
√−11),

and δE = 0 if K = Q(
√−7). This completes the proof of Theorem 1.3.

7 Proof of Theorem 1.4

We prove Theorem 1.4 by comparing the main term δE li x ∼ δE
x

log x with the error
terms

O

(
x

(log x)(log log x
N 2 )

· log log x

log log x
N 2

)

, (46)

O
(

x5/6(log x)2(log(N x))1/3
)

(47)

obtained in Theorems 1.1 and 1.2, respectively. We recall that the latter assumes GRH.
From (44), (45) and Mertens’ Theorem we deduce that

δE . 1
log log N

.

Then we see that if we choose x := c exp(eN 3) for some suitable absolute constant
c, we have that the main term is bigger than the error term (46), while if we choose
x := c(ε)(log N )2+ε for some suitable constant c(ε) depending on a fixed ε > 0, we
have that the main term is bigger than the error term (47). This completes the proof of
Theorem 1.4.
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