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CYCLICITY OF CM ELLIPTIC CURVES MODULO p

ALINA CARMEN COJOCARU

Abstract. Let E be an elliptic curve defined over Q and with complex multi-
plication. For a prime p of good reduction, let E be the reduction of E modulo
p. We find the density of the primes p ≤ x for which E(Fp) is a cyclic group.
An asymptotic formula for these primes had been obtained conditionally by
J.-P. Serre in 1976, and unconditionally by Ram Murty in 1979. The aim
of this paper is to give a new simpler unconditional proof of this asymptotic
formula and also to provide explicit error terms in the formula.

1. Introduction

Let E be an elliptic curve defined over Q and of conductor N. By a famous result
of Mordell, the set E(Q) of Q-rational points of E is a finitely generated abelian
group. The study of the free part of E(Q) is still one of the major problems in
arithmetic geometry.

Now, for a prime p of good reduction for E (that is, p - N), we denote by E
the reduction of E modulo p. This is an elliptic curve defined over Fp, the finite
field with p elements. Naturally, as in the rational case, one is interested in the
study of the structure of the group E(Fp) of Fp-rational points of E. From classical
theory, E(Fp) can be written as the product of two cyclic finite groups. Indeed,
E(Fp) ⊆ E(Fp)[k] ⊆ Z/kZ⊕Z/kZ, where Fp denotes the algebraic closure of Fp, k
is a positive integer such that the order #E(Fp) of E(Fp) divides k, and E(Fp)[k]
denotes the group of Fp-rational points of E annihilated by k. Early computations
of Borosh, Moreno and Porta ([BMP]) showed that, in fact, for “many” primes p,
the group E(Fp) is cyclic. One expects this to be true for infinitely many primes
p, as suggested by the elliptic curve analogue of Artin’s primitive root conjecture
formulated by Lang and Trotter in 1977 (see [LT2]).

Our goal in this paper is to provide an asymptotic formula, with explicit error
terms, for the function

f(x,Q) := #{p ≤ x : p - N,E(Fp) cyclic},
in the case of an elliptic curve E defined over Q and with complex multiplication.

In 1976 (see [Se1]), J. -P. Serre showed that C. Hooley’s conditional method
of proving Artin’s conjecture on primitive roots (see [Ho, ch. 3]) can be adapted
to estimate f(x,Q). More precisely, let Q denote the algebraic closure of Q and

Received by the editors July 24, 2002 and, in revised form, December 4, 2002.
2000 Mathematics Subject Classification. Primary 11G05; Secondary 11N36, 11G15, 11R45.
Key words and phrases. Cyclicity of elliptic curves modulo p, complex multiplication, appli-

cations of sieve methods.
Research partially supported by an Ontario Graduate Scholarship.

c©2003 American Mathematical Society

2651



2652 ALINA CARMEN COJOCARU

let Q(E[k]) denote the field obtained by adjoining to Q the coordinates of the
Q-rational points of E annihilated by k. Then, under the Generalized Riemann
Hypothesis (denoted GRH) for the Dedekind zeta functions of the division fields
Q(E[k]) of E, Serre proves that, as x→∞,

(1) f(x,Q) = fE lix+ o
(

x

log x

)
,

where lix :=
∫ x

2
1

log t dt is the logarithmic integral and

fE :=
∞∑
k=1

µ(k)
[Q(E[k]) : Q]

,

with µ(·) denoting the Möbius function.
We recall that for real-valued functions f and g 6= 0 we write f(x) = o(g(x)) to

mean that limx→∞
f(x)
g(x) = 0. Also, if g has positive values, we write f(x) = O(g(x))

or f � g to mean that there exists a positive constant A such that |f(x)| ≤
Ag(x) ∀x. If the constant A depends on some quantity B, then we may write
f(x) = OB(g(x)) or f �B g. In this paper, whenever we write f(x) = O(g(x)) or
f � g, we mean that the implied O-constants are absolute. If f � g � f, then we
write f � g.

In 19791 (see [Mu1, pp. 161-167]), Ram Murty removed GRH in formula (1)
for elliptic curves with complex multiplication (denoted CM). His proof uses class
field theoretical properties of the division fields of CM elliptic curves, as well as a
number field version of the Bombieri-Vinogradov theorem (whose proof is based on
the large sieve for number fields). In 2000 (see [acC1]), the author proved formula
(1) for elliptic curves without complex multiplication (denoted non-CM) under the
assumption of a quasi-GRH (more precisely, a zero-free region of real part > 3/4
for the Dedekind zeta functions of Q(E[k])). For more history about f(x,Q) in
both the CM and non-CM cases we refer the reader to [acC1], [acC2] and [Mu3].

In this paper we give a new simpler unconditional proof for the asymptotic
formula for f(x,Q) in the complex multiplication case, and provide explicit error
terms in this formula. We are proving the following:

Theorem 1.1. Let E be a CM elliptic curve defined over Q, of conductor N and
with complex multiplication by the full ring of integers OK of an imaginary quadratic
field K = Q

(√
−D

)
, where D is a positive square-free integer. Then, as x→∞,

f(x,Q) = fE lix+ ON

(
x

(log x)(log log log x)

)
,(2)

or, more precisely,

f(x,Q) = fE lix+ O

(
x

(log x)(log log log x
N2 )

· log log x
log log x

N2

)
,(3)

where the O-constant in (2) depends on N and the one in (3) is absolute.

Corollary 1.2. Let E be a CM elliptic curve defined over Q, of conductor N and
such that Q(E[2]) 6= Q. Then the smallest prime p - N for which E(Fp) is cyclic
has size O

(
exp

(
N2
))
. The implied O-constant is absolute.

1It was communicated to the author by Ram Murty that this result was obtained in 1979;
however, it appeared in print only in 1983.
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It is possible that the error terms in Theorem 1.1 can be improved, but this
involves more sophisticated methods than the ones used in our paper. We relegate
this to future research.

2. Preliminaries

2.1. Notation. Given an elliptic curve E defined over Q, p will always denote a
prime of good reduction for E. We set ap := p + 1 −#E(Fp) and say that p is of
ordinary reduction if ap 6= 0, and of supersingular reduction if ap = 0. We denote
by πp and πp the roots of the polynomial X2 − apX + p ∈ Z[X ].

If not otherwise stated, q will denote a rational prime and k a positive integer;
π(x) will denote the number of rational primes ≤ x; #S will denote the cardinality
of a set S; Kerφ will denote the kernel of a morphism φ.

2.2. Algebraic preliminaries. The following preliminary lemmas are well known,
but, for the sake of completeness, we include them here.

Lemma 2.1. Let E be an elliptic curve defined over Q and of conductor N. Let
E[k] be the group of k-division points of E. Then

(1) the ramified primes of Q(E[k])/Q are divisors of kN ;
(2) assuming that E has complex multiplication and k > 2, we have

φ(k)2 � [Q(E[k]) : Q]� k2,

where φ(k) denotes the Euler function.

For proofs of this lemma the reader is referred to [Silv1, p. 179] and [Silv2,
p. 135].

Lemma 2.2. Let E be an elliptic curve defined over Q and of conductor N. Using
the notation introduced in Section 2.1 we have that, for a positive integer k and a
prime p - k of good reduction for E, p splits completely in Q(E[k])/Q if and only if
πp−1
k is an algebraic integer.

Proof. We recall that πp is the algebraic quadratic integer corresponding to the
Frobenius endomorphism

E
(
Fp
)
−→ E

(
Fp
)

(x, y) 7→ (xp, yp) ,

which we also denote by πp.
Since (p, kN) = 1, we have that p is unramified in Q(E[k])/Q (see part 1 of

Lemma 2.1). By classical results in algebraic number theory, p splits completely in
Q(E[k])/Q if and only if πp|E[k] = 1, where 1 denotes the identity map. This last
condition is equivalent to saying that Ker([k]) ⊆ Ker(πp − 1) as maps E

(
Fp
)
−→

E
(
Fp
)
, where [k] is the multiplication by k map. Hence there exists an elliptic

curve endomorphism φ : E
(
Fp
)
−→ E

(
Fp
)

such that φ ◦ [k] = πp − 1 (see [Silv1,
Corollary 4.11, p. 77]). This is equivalent to saying that πp−1

k is an algebraic
integer. �

Lemma 2.3. Let E be a CM elliptic curve defined over Q and with complex mul-
tiplication by an imaginary quadratic field K. Then, for every prime p of ordinary
good reduction for E, we have Q(πp) = K.
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Proof. First we observe that

Q(πp) ⊆ EndFp(E)⊗Z Q ⊆ EndFp(E)⊗Z Q.

Then we note that, since E has complex multiplication by K, we have an embedding
K ⊆ EndFp(E) ⊗Z Q, and, moreover, since p is a prime of ordinary reduction, we
actually have K = EndFp(E) ⊗Z Q. Thus Q(πp) ⊆ K for any prime p of ordinary
reduction for E. But K is a degree 2 extension of Q, and so is Q(πp). This gives us
the desired equality. �

Lemma 2.3 describes a feature of CM elliptic curves that will play a very impor-
tant role in our unconditional estimates of f(x,Q). It actually describes one of the
main differences between CM and non-CM elliptic curves (see [LT1]).

2.3. Analytic preliminaries. The next preliminary lemma is an application of
the sieve of Eratosthenes, which we recall below.

Theorem 2.4 (The sieve of Eratosthenes). Let A be a set of natural numbers ≤ x,
and let P be a set of rational primes. To each prime p ∈ P we associate ω(p)
distinguished residue classes modulo p. For any square-free integer d composed of
primes of P we set

A(d) := {a ∈ A : a belongs to at least one of the ω(p) residue classes

modulo p for all p|d},

and
ω(d) :=

∏
p|d

ω(p).

For a fixed real number z, we let S(A,P , z) be the number of elements a ∈ A that do
not belong to any of the distinguished residue classes modulo p for all p ∈ P , p ≤ z,
and we set

W (z) :=
∏
p∈P
p≤z

(
1− ω(p)

p

)
.

We assume that
(1) there exists a real number X such that, for all square-free integers d com-

posed of primes of P,

#A(d) = X
ω(d)
d

+Rd

for some Rd = O(ω(d));

(2)
∑
p∈P
p≤z

ω(p) log p
p

≤ c log z + O(1) for some positive constant c.

Then

S(A,P , z) = XW (z) + O
(
x(log z)c+1 exp

(
− logx

log z

))
,

where the implied O-constant is absolute.

For a proof of this result, see [Mu4, p. 141].
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Lemma 2.5. Let x ∈ R and let D, k be fixed positive integers with k <
√
x − 1.

Then

S1
k := #

{
p ≤ x : p = (αk + 1)2 +Dβ2k2 for some α, β ∈ Z

}
= O

((√
x

k
+ 1
) √

x log log x

k
√
D log

√
x−1
k

)
;

S2
k := #

{
p ≤ x : p =

(α
2
k + 1

)2

+D
β2

4
k2 for some α, β ∈ Z

}
= O

((√
x

k
+ 1
) √

x log log x

k
√
D log

√
x−1
k

)
.

The implied O-constants are absolute.

Proof. 1. Let us observe that the conditions p ≤ x and p = (αk + 1)2 +Dβ2k2 for
some α, β ∈ Z imply

α ∈
[
−1−

√
x

k
,
−1 +

√
x

k

]
∩ Z,

β ∈
[
−
√
x

k
√
D
,

√
x

k
√
D

]
∩ Z, β 6= 0.

Thus

(4) S1
k ≤

∑
β

′
#
{
α ∈

[
−1−

√
x

k
,
−1 +

√
x

k

]
∩ Z : (αk + 1)2 +Dβ2k2 a prime

}
,

where the sum
∑
β

′
is over nonzero numbers β ∈

[
−
√
x

k
√
D
,
√
x

k
√
D

]
∩ Z. We set

A :=
{
α ∈

[
−1−√x

k
,
−1 +

√
x

k

]
∩ Z
}
,

P :=
{
p a rational prime : (p, k) = 1,

(
−D
p

)
= 1
}
,

with
(
·
p

)
denoting the Legendre symbol modulo p. To each prime p ∈ P we asso-

ciate the residue classes
(−1± βkD)k−1(mod p),

where D is an integer such that D2 ≡ −D(mod p) (let us observe that (αk + 1)2 +
Dβ2q2 = p imposes the conditions

(
−D
p

)
= 1 and (p, k) = 1, and hence D and

k−1(mod p) are well defined).
For a fixed real number z we have

#
{
α ∈

[
−1−

√
x

k
,
−1 +

√
x

k

]
∩ Z : (αk + 1)2 +Dβ2k2 a prime

}
≤ S(A,P , z) + π(z)

≤ S(A,P , z) + z,

(5)

with S(A,P , z) defined as in the sieve of Eratosthenes.
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Now we want to verify that the hypotheses of Theorem 2.4 are satisfied. Ele-
mentary estimates give us

#A(d) := #
{
α ∈ A : (αk + 1)2 +Dβ2k2 ≡ 0(mod d)

}
= 2

(
2
√
x

k
+ 1
)

1
d

+ O(1)

for all square-free integers d composed of primes of P . Thus the first hypothesis
of the sieve of Eratosthenes is satisfied with ω(d) = 2 and X = 2

√
x

k + 1. Using

Mertens’ theorem and recalling that
(
−D
p

)
= 1, hence that p splits completely in

Q(
√
−D), we obtain∑

p∈P
p≤z

ω(p) log p
p

= 2
∑
p∈P
p≤z

log p
p

= log z + O(1).

Thus the second hypothesis of the sieve of Eratosthenes is satisfied with c = 1.
Therefore,

S(A,P , z) =
(

2
√
x

k
+ 1
)
W (z) + O

(√
x+ 1
k

(log z)2 exp

(
−

log
√
x−1
k

log z

))
,

where

W (z) =
∏
p∈P
p≤z

(
1− 2

p

)
≤ exp

−2
∑
p∈P
p≤z

1
p

� exp(− log log z) =
1

log z
,

by using the elementary inequality 1 + t ≤ exp(t) and, again, Mertens’ theorem.
Let us choose z such that

log z =
log
√
x−1
k

3 log log x
.

Then

O

(√
x+ 1
k

(log z)2 exp

(
−

log
√
x−1
k

log z

))
= O

(√
x+ 1
k

1
log x(log log x)2

)
,

and so

S(A,P , z) =
(

2
√
x

k
+ 1
)

O

(
log log x

log
√
x−1
k

)
+ O

( √
x

k log x(log log x)2

)

=
(

2
√
x

k
+ 1
)

O

(
log log x

log
√
x−1
k

)
.

From (5) we obtain

#
{
α ∈

[
−1−

√
x

k
,
−1 +

√
x

k

]
∩ Z : (αk + 1)2 +Dβ2k2 a prime

}
=
(

2
√
x

k
+ 1
)

O

(
log log x

log
√
x−1
k

)
,

which, used in (4), completes the proof of the first part of the lemma.
2. Similar to the proof above. �
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We remark that for S1
k and S2

k of the above lemma we actually have elementary
estimates that are weaker than the ones given by Lemma 2.5 only by a log log x

log x

factor. The sieve has been invoked precisely for obtaining this saving.

Lemma 2.6. Keeping the notation of Lemma 2.5, we have that, for any k and x,

Sik �
√
x

k
√
D

(
2
√
x

k
+ 1
)
,

where 1 ≤ i ≤ 2.

Proof. We justify this estimate for i = 1. The case i = 2 is resolved similarly. We
observe that the conditions p ≤ x and p = (αk + 1)2 + Dβ2k2 for some α, β ∈ Z
give us 2

√
x
k + 1 choices for α and 2

√
x

k
√
D

choices for β. The lemma follows. �

3. The proof of the theorem and corollary

As explained in [Mu1, pp. 153-154], we have that E(Fp) is cyclic if and only if
p does not split completely in Q(E[q]) for any prime q 6= p. Also, we have that if
p ≤ x and p splits completely in Q(E[k]) for some k, then k2|(p+ 1− ap), and so,
using Hasse’s bound ap ≤ 2

√
p, we obtain k ≤ 2

√
x. Therefore, using the simple

asymptotic sieve, we can write

f(x,Q) = N(x, y) + O
(
M
(
x, y, 2

√
x
))
,

where

N(x, y) := # {p ≤ x : p does not split completely in any Q(E[q])/Q, q ≤ y} ,

M
(
x, y, 2

√
x
)

:= # {p ≤ x : p splits completely in someQ(E[q])/Q
with y ≤ q ≤ 2

√
x
}
,

and where y is a real number to be chosen later. In order to estimate f(x,Q) we
need to estimate each of N(x, y) and M(x, y, 2

√
x) and to choose the parameter y

appropriately.

3.1. Estimate for N(x, y). By the inclusion-exclusion principle we have

N(x, y) =
∑
k

′
µ(k)π1(x,Q(E[k])/Q),

where the sum is over all square-free positive integers k ≤ 2
√
x whose prime divisors

are ≤ y, and where

π1(x,Q(E[k])/Q) := #{p ≤ x : p splits completely in Q(E[k])/Q}.

We estimate this sum by using the unconditional effective version of the Chebotarev
density theorem as stated in [Mu2, p. 243] or [acC1, p. 337]. To do so, let us recall
from [Se2, p. 130] that if L/Q is a finite normal field extension that is ramified only
at the primes p1, p2, . . . , pm, then

1
[L : Q]

log | disc(L/Q)| ≤ log[L : Q] +
m∑
j=1

log pj ,
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where [L : Q] and disc(L/Q) denote the degree and the discriminant, respectively,
of L/Q.We apply this result, together with Lemma 2.1, to the fields Q(E[k]), whose
degree and discriminant over Q we denote by n(k) and dk, respectively. We get

n(k)|dk|
2

n(k) � k8N2

and
n(k) (log |dk|)2 � k6

(
log
(
k2N

))2
,

and so the maximum of the two quantities above is � k8N2. In order to apply the
unconditional effective Chebotarev density theorem mentioned before we need to
have k8N2 � log x. Since k ≤ exp(2y), it is enough to choose

(6) y =
1
8

(log log x− 2 logN).

Then, by the unconditional effective Chebotarev density theorem, we obtain

N(x, y) =

(∑
k

′µ(k)
n(k)

)
lix+ O

(∑
k

′
x exp

(
−A
√

log x
n(k)

))
for some effective positive constant A. To handle the error term we use that n(k)�
k2 and that there are at most 2y square-free numbers composed of primes ≤ y. Then

(7) N(x, y) =

(∑
k

′µ(k)
n(k)

)
lix+ O

(
x

N1/4(log x)B

)
for any positive constant B.

3.2. Estimate for M (x, y, 2
√
x). For real numbers ξ1, ξ2, we denote by

Mo (x, ξ1, ξ2)

the number of primes p ≤ x such that p has ordinary reduction and splits completely
in some Q(E[q]) with ξ1 ≤ q ≤ ξ2, and by

M s(x, ξ1, ξ2)

the number of primes p ≤ x such that p has supersingular reduction and splits
completely in some Q(E[q]) with ξ1 ≤ q ≤ ξ2. We write

(8) M
(
x, y, 2

√
x
)

= Mo
(
x, y, 2

√
x
)

+M s
(
x, y, 2

√
x
)

and estimate each of the two terms. For the first one we observe that

(9) Mo
(
x, y, 2

√
x
)
≤

∑
y<q≤2

√
x

πo1(x,Q(E[q])/Q),

where

πo1(x,Q(E[q])/Q) := #{p ≤ x : ap 6= 0 and p splits completely in Q(E[q])/Q}.
By Lemmas 2.2 and 2.3 we obtain

πo1(x,Q(E[q])/Q) ≤ #
{
p ≤ x :

πp − 1
q

∈ OK
}
.

Since the norm of πp in K/Q is p, we get

#
{
p ≤ x :

πp − 1
q

∈ OK
}
≤ Sq,
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where Sq is S1
q if −D ≡ 2, 3(mod 4), and S2

q if −D ≡ 1(mod 4), with S1
q , S

2
q as in

Lemma 2.5.
Let us fix a real number u <

√
x− 1. Using the elementary estimate for Sq given

in Lemma 2.6, we obtain∑
u<q≤2

√
x

πo1(x,Q(E[q])/Q) ≤
∑

u<q≤2
√
x

Sq

�
∑

u<q≤2
√
x

√
x

q
√
D

(
2
√
x

q
+ 1
)

=
2x√
D

∑
u<q≤2

√
x

1
q2

+
√
x√
D

∑
u<q≤2

√
x

1
q

� x√
Du log u

+
√
x log log x√

D
.(10)

On the other hand, using the estimates for Sq given in Lemma 2.5, we obtain∑
y<q≤u

πo1(x,Q(E[q])/Q) ≤
∑

y<q≤u
Sq

�
∑

y≤q≤u

(
x

q2
√
D

+
√
x

q
√
D

)
log log x

log
√
x−1
q

� x log log x
√
D log

√
x−1
u

∑
y<q≤u

1
q2

+
√
x log log x

√
D log

√
x−1
u

∑
y<q≤u

1
q

� x log log x
√
D(log

√
x−1
u )y log y

+
√
x(log log x)(log log u)
√
D log

√
x−1
u

.(11)

We choose
u = log x

and recall that y = 1
8 (log log x− 2 logN) (see (6)) and that D is bounded, since E

has CM. Then, from (9), (10) and (11) we get

(12) Mo(x, y, 2
√
x) = O

(
x log log x

(log x)(log log x
N2 )(log log log x

N2 )

)
.

For the second term in (8) we have

(13) M s
(
x, y, 2

√
x
)
≤

∑
y<q≤2

√
x

πs1(x,Q(E[q])/Q),

where

πs1(x,Q(E[q])/Q) := #{p ≤ x : ap = 0 and p splits completely in Q(E[q])/Q}.
We observe that if p is a prime of supersingular reduction that splits completely in
some Q(E[q])/Q, then q = 2. Indeed, for such primes p and q we have, on the one
hand, that q2|(p + 1 − ap) = (p + 1), and, on the other hand, that q|(p − 1); thus
q|2. Now we note that in the sum of (13) we run over q > y; thus, by our choice of
y (see (6)), q 6= 2. This implies that

(14) M s
(
x, y, 2

√
x
)

= 0.
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3.3. The final formula. Putting together (7), (8), (12) and (14) we get

f(x,Q) =

(∑
k

′µ(k)
n(k)

)
lix + O

(
x

N1/4(log x)B

)
+ O

(
x

(log x)(log log x)

)
+ O

(
x

(log x)(log log log x
N2 )

· log log x
log log x

N2

)
,

where the implied O-constants are absolute. It remains to analyze

(∑
k

′ µ(k)
n(k)

)
lix.

We write ∑
k

′µ(k)
n(k)

=
∑
k

µ(k)
n(k)

−
∑
k

′′µ(k)
n(k)

,

where
∑

k
′′ means that the sum is over those positive square-free integers k for

which there exists a prime divisor q > y. Using part 2 of Lemma 2.1 we get that∑
k

′′µ(k)
n(k)

lix � x

log x

∑
q>y

∞∑
t=1

1
q2t3/2

� x

(log x)y log y

= O

(
x

(log x)(log log x
N2 )(log log log x

N2 )

)
.

Thus

(15) f(x,Q) = fE lix+ O

(
x

(log x)(log log log x
N2 )

· log log x
log log x

N2

)
.

This completes the proof of Theorem 1.1.

3.4. The proof of Corollary 1.2. First, let us recall that it was pointed out by
Serre (see [Mu3, p. 327]) that the density fE is positive if and only if Q(E[2]) 6= Q.
Now, we note that a necessary condition for formula (15) to hold is that x ≥
exp

(
N2
)
. Then, if x � exp

(
N2
)
, the main term of (15) will be bigger than the

error term. This proves the assertion of the corollary.

4. Concluding remarks

As mentioned in the proof of Corollary 1.2, the density fE is positive if and only
if Q(E[2]) 6= Q. For the sake of clarity, we explain this in what follows in the case
of a CM elliptic curve E defined over Q. Naturally, in order to have fE 6= 0 we need
to assume Q(E[2]) 6= Q, for otherwise the torsion part of E(Q) contains the Klein
four group and so E(Fp) cannot be cyclic. The condition is also sufficient. To see
this, let us first note that if Q(E[2]) 6= Q, then [Q(E[2]) : Q] is 2, 3 or 6. We let
K2 be the unique abelian subextension contained in Q(E[2]). Also, we let K be the
CM field of E. We recall that K(E[q]) = Q(E[q]) for any prime q ≥ 3 (see [Mu1,
p. 165, Lemma 6]), and we observe that since K is a quadratic field and K2 is a
cubic or a quadratic field, we have either K2 ∩K = Q or K2 = K. If K2 ∩K = Q,
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then using that K2 ⊆ Q(E[2]) and K ⊆ Q(E[q]) for any q ≥ 3, we deduce that the
density of the primes p that do not split completely in any of the fields Q(E[q]) is
greater than or equal to the density of the primes p that do not split completely in
K2 and K. In other words,

fE ≥
(

1− 1
[K2 : Q]

)(
1− 1

[K : Q]

)
≥ 1

4
.

If K2 = K, then K ⊆ Q(E[q]) for any prime q, and so the density of the primes p
that do not split completely in any of the fields Q(E[q]) is greater than or equal to
the density of the primes p that do not split completely in K. In other words,

fE ≥
(

1− 1
[K : Q]

)
≥ 1

2
.

This completes the proof of the positivity of fE .
The main significance of our unconditional proof of the asymptotic formula for

f(x,Q) in the case of a CM elliptic curve lies in the simplicity of the tools that
are used. Ram Murty’s initial proof avoided the GRH by using a difficult appli-
cation of the large sieve for number fields, namely a Bombieri-Vinogradov type
result for number fields. In our new proof we use instead an application of the
sieve of Eratosthenes, one of the simplest sieves in number theory. We point out
that this application of the sieve of Eratosthenes (Lemma 2.5) could be viewed as
a Brun-Titchmarsh theorem for quadratic number fields, since it gives nontrivial
upper bounds for the number of (principal) prime ideals whose generator satisfies
congruence conditions. A result of this kind had been obtained in [Sch], but as an
application of the large sieve for number fields, and could have been used in our
treatment of M(x, y, 2

√
x).

Another significance of our new proof is that it provides explicit error terms,
with absolute O-constants. As noted in Corollary 1.2, we can then deduce an
unconditional upper bound for the smallest prime p for which E(Fp) is cyclic.
Considerable improvements of this bound, under GRH, will be discussed in an
upcoming paper.

Naturally, one can ask if our ideas can be explored further and used in other
related situations. For example, one could consider the question of determining
the number of prime ideals for which the reduction of a CM elliptic curve defined
over a number field gives a cyclic group. It seems that our tools can be used in
this situation. Another question is that of using the ideas of this paper in the case
of a non-CM elliptic curve. At present, no unconditional proof for the asymptotic
formula for f(x,Q) is known in this situation, but, as mentioned in Section 1, only
a proof based on a quasi-GRH assumption (see [acC1]). If we assume a variation of
a conjecture of Lang and Trotter on the number of distinct fields Q(πp) obtained
when p runs over primes of ordinary reduction for a non-CM elliptic curve (see
[LT1]), then it turns out that we can follow the current CM approach even in
the non-CM case. The dependence 1√

D
on the discriminant D of the estimates

provided by Lemma 2.5 will be more advantageous than the dependence on D
provided by Schaal’s result mentioned above. This is, again, an asset of our new
proof. Yet another related question is that of determining an asymptotic formula
for the number of primes p for which the order of E(Fp) is square-free. The ideas
of our paper can be successfully used to answer this question if E is a CM elliptic
curve. The details of our last two claims will be given in different upcoming papers.
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