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The Square Sieve and the
Lang–Trotter Conjecture

Alina Carmen Cojocaru, Etienne Fouvry and M. Ram Murty

Abstract. Let E be an elliptic curve defined over Q and without complex multiplication. Let K be a
fixed imaginary quadratic field. We find nontrivial upper bounds for the number of ordinary primes
p ≤ x for which Q(πp) = K, where πp denotes the Frobenius endomorphism of E at p. More
precisely, under a generalized Riemann hypothesis we show that this number is OE(x17/18 log x), and

unconditionally we show that this number is OE,K
( x(log log x)13/12

(log x)25/24

)
. We also prove that the number of

imaginary quadratic fields K, with − disc K ≤ x and of the form K = Q(πp), is #E log log log x for
x ≥ x0(E). These results represent progress towards a 1976 Lang–Trotter conjecture.

1 Introduction

Let E be an elliptic curve defined over Q and of conductor N , and let SE be the set
of primes of bad reduction for E (that is, the prime divisors of N). For a prime p of
good reduction for E (i.e. p /∈ SE) we introduce the usual notation: Ē is the reduction
of E modulo p; ap := p + 1 − #Ē(Fp) (here, #S denotes the cardinality of a set S);
πp is a (complex) root of the polynomial X2 − apX + p ∈ Z[X]. We recall that p is
said to be of ordinary reduction for E if ap #= 0, and of supersingular reduction for
E otherwise. Also, let Q denote the algebraic closure of Q and End

Q
(E) denote the

ring of endomorphisms of E over Q .
If E is a curve with complex multiplication (denoted CM), then we know that, for

primes p of ordinary reduction for E,

Q(πp) = End
Q

(E) ⊗Z Q.

By contrast, if E is a curve without complex multiplication (denoted non-CM),
then we will prove that, when p runs over primes of ordinary reduction for E, there
are infinitely many distinct fields Q(πp) (see Corollary 1.5 below). More generally,
we have the following conjecture of Lang and Trotter [LT]:

Conjecture 1.1 (Lang–Trotter, 1976) Let E be a non-CM elliptic curve defined over
Q . Let K be a fixed imaginary quadratic field. We denote by

PE(K, x) := #{p ≤ x : p /∈ SE, Q(πp) = K}.
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Then there exists a positive constant C(K, E), depending on K and E, such that, as x →
∞,

PE(K, x) ∼ C(K, E)
x1/2

log x
.

In 1981 [Se3, p. 191], J-P. Serre asserted that one could show, under the assump-
tion of a Generalized Riemann Hypothesis (denoted GRH) and using Selberg’s sieve,
that

(1) PE(K, x) = OE,K(xθ)

for some θ < 1. This result does not appear anywhere in the literature and, moreover,
we do not know of any progress concerning the conjecture of Lang and Trotter to have
been made yet. Serre had a proof for (1) which he did not publish. In [Se4, p. 715],
Serre made a brief remark indicating that in order to obtain (1), one could use the
context of l-adic Lie groups, namely apply [Se3, Theorem 10] directly to a Galois
representation r : Gal(Q/Q) → GL2(Zl) × GL2(Zl), where Gal(Q/Q) denotes the
Galois group of Q/Q and GL2(Zl) denotes the group of 2×2 invertible matrices with
entries in the l-adic integers Zl, and where the first factor of r is given by the action
of Gal(Q/Q) on the l-adic Tate module and the second factor is a Hecke character
of K. In private communication, he has indicated to us that this gives an estimate
of OK(x

9
10 /(log x)

3
5 ), without specifying the dependence on K. Based on his remark,

this dependence seems to be at least as large as the class number of K, which grows
like

√
D if we write K = Q(

√
−D) for some positive square-free integer D. Kumar

Murty has observed that one can dispense with the context of l-adic Lie groups and
apply the Chebotarev density theorem directly, with the same result. The existence
of the extra factor (roughly similar to

√
D, as mentioned above) in the upper bound

for PE(K, x) annihilates the interest in this upper bound as log D/ log x increases, and
apparently prevents us from deducing a result as good as Corollary 1.5 below.

Our goal in this paper is to indicate how a simple device, that we call the square
sieve, can be used to get non-trivial upper bounds for PE(K, x). It will be noticed that
even though the exponent 17/18 (see Theorem 1.2 below) can be improved upon,
our bound is uniform in K. Thus, the ‘raison d’être’ of this paper is two-fold. First to
derive a non-trivial and independent of K estimate for PE(K, x) in a simple way (since
no such estimate has ever appeared in print) and second to give a novel application
of the square sieve. No doubt, the technique will have wider applications.

In the last section, we record remarks made by Serre to us in several e-mail com-
munications. These remarks may be useful in future research.

Precise formulations of our results are as follows.

Theorem 1.2 Let E be a non-CM elliptic curve defined over Q and of conductor N.
Let Q(

√
−D) be a fixed imaginary quadratic field. Let x ≥ 3 be a positive real number.

With the notation introduced before we have that:

(a) if we assume GRH for the Dedekind zeta functions of the division fields of E, then

PE

(
Q(

√
−D), x

)
,N x17/18 log x;
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(b) if we assume GRH and Artin’s Holomorphy Conjecture (denoted AHC) for the
L-functions of the irreducible characters of the Galois groups of the division fields
of E, then

PE

(
Q(

√
−D), x

)
,N x13/14 log x;

(c) if we assume GRH, as well as AHC and a Pair Correlation Conjecture (denoted
PCC) for the L-functions of the irreducible characters of the Galois groups of the
division fields of E, then

PE

(
Q(

√
−D), x

)
,N x11/12 log x.

The implied ,-constants above depend at most on N.

Theorem 1.3 There exists an absolute constant c such that, for any non-CM elliptic
curve E defined over Q and of conductor N, for every real number x ≥ 3, and for every
positive square-free integer D ≥ 1, we have

PE

(
Q(

√
−D), x

)
,N

x(log log x)13/12

(log x)25/24

(
1 + ν(x, D, c)

)
,

where

ν(x, D, c) := #

{
p a prime : p|D, c

(log x)1/24

(log log x)1/12
≤ p ≤ 2c

(log x)1/24

(log log x)1/12

}
.

In particular, under the same conditions, we have

PE

(
Q(

√
−D), x

)
,N

x(log log x)13/12

(log x)25/24

(
1 + ν(D)

)
,

where ν(D) denotes the number of (distinct) prime divisors of D. The implied ,-con-
stants above depend on N, at most.

Remark 1.4 Since the number of primes between c (log x)1/24

(log log x)1/12 and 2c (log x)1/24

(log log x)1/12 is

∼ 24c
(log x)1/24

(log log x)13/12
,

we see that the above upper bound is, in the worst case (i.e., when any prime p of the
above interval divides D) just as weak as the trivial bound PE

(
Q(

√
−D), x

)
, x

log x .

Notice that for almost all square-free positive integers D ≤ 4x, the above upper-
bounds are valuable and that the effect of the term ν(x, D, c) could be diminished by
averaging over D belonging to an interval.
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We are also concerned with the values of the fields Q(πp) as p runs over primes.
We denote by DE(x) the set of (distinct) square-free parts of 4p−a2

p for primes p ≤ x
of ordinary reduction for E. So DE(∞) is the sequence (1 ≤)D1 < D2 < D3 < · · ·
of square-free positive integers D such that Q(

√
−D) = Q(πp) for some prime p

of ordinary reduction for E (note the trivial inclusion DE(x) ⊂ DE(∞) ∩ [1, 4x]).
Using Theorems 1.2 and 1.3 we obtain conditional and unconditional lower bounds
for #

(
DE(∞) ∩ [1, x]

)
.

Corollary 1.5 Let E be a non-CM elliptic curve defined over Q and of conductor N.
For x ≥ 3, we have that:

(a) if we assume GRH for the Dedekind zeta functions of the division fields of E, then

#DE(x) /N
x1/18

(log x)2
;

(b) if we assume GRH and AHC for the L-functions of the irreducible characters of the
Galois groups of the division fields of E, then

#DE(x) /N
x1/14

(log x)2
;

(c) if we assume GRH, AHC and PCC for the L-functions of the irreducible characters
of the Galois groups of the division fields of E, then

#DE(x) /N
x1/12

(log x)2
;

(d) without any unproven hypothesis,

#DE(∞) = ∞.

More precisely, there exists x0 = x0(N) such that, for any x > x0, at least one of the
following two events (2), (3) is true:

#
(
DE(∞) ∩ [1, 4x]

)
≥ (log x)1/24,(2)

min
{(

DE(∞) ∩ (4x,∞)
)}

≤ exp
(

(log x)26
)
.(3)

In any case we have, for x ≥ x0(N),

#
(
DE(∞) ∩ [1, x]

)
/N log log log x.

The implied constants in these estimates depend on N, at most.

Remark 1.6 Note that in the statement #DE(∞) = ∞ of Corollary 1.5, the condi-
tion for a prime p to be of ordinary reduction is essential, for otherwise D = p, and
the result is a trivial consequence of a theorem of Elkies [El] telling us that there are
infinitely many supersingular primes p for E.
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Remark 1.7 The pair of exponents ( 1
24 , 26) appearing in (2) and (3) can be replaced

by others (to be more precise, by any pair of real numbers (θ0, θ1) satisfying θ0 > 0
and θ1 > 24(1 + θ0); see the proof in Section 5). They illustrate our poor knowledge
of the set DE(∞), which is mainly due to the effect of the term ν(x, D, c), which may
be quite large.

In what follows, p, q, l will denote rational primes, k positive integers, and x, z
positive real numbers. Given an elliptic curve E defined over Q and of conductor N ,
the prime p will be such that p ! N . Whenever we write ,c, /c or Oc for some c, we
indicate that the implicit constant depends on c, at most; whenever we write ,, /
or O, it indicates that the implicit constant is absolute.

2 Preliminaries

2.1 The Square Sieve

The principal tool in the proofs of our main results is the square sieve, which origi-
nates in [H-B] and which can be stated as follows:

Theorem 2.1 (The square sieve) Let A be a finite set of not necessarily distinct, non-
zero integers, and let P be a set of (distinct) odd primes. Set

S(A) := #{α ∈ A : α is a square}.

Then

S(A) ≤
#A

#P
+ max

l,q∈P

l "=q

∣∣∣
∑

α∈A

( α

lq

)∣∣∣ +
2

#P

∑

α∈A

∑

l∈P
(α,l)"=1

1 +
1

(#P)2

∑

α∈A

( ∑

l∈P
(α,l)"=1

1
) 2

,

where ( ·
lq ) denotes the Jacobi symbol, (α, l) denotes the greatest common divisor of α

and l, and max denotes the maximum element of the above set of numbers.

Proof We observe that if α ∈ A is a square, then

∑

l∈P

( α

l

)
=

∑

l∈P
(α,l)=1

( α

l

)
+

∑

l∈P
(α,l)"=1

( α

l

)
=

∑

l∈P
(α,l)=1

1 = #P −
∑

l∈P
(α,l)"=1

1,

that is,
∑

l∈P

( α

l

)
+

∑

l∈P
(α,l)"=1

1 = #P.
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Thus

S(A) ≤
∑

α∈A

1

(#P)2

(∑

l∈P

( α

l

)
+

∑

l∈P
(α,l)"=1

1
) 2

=

∑

α∈A

1

(#P)2

( ∑

l,q∈P

( α

lq

)
+ 2

(∑

l∈P

( α

l

))( ∑

l∈P
(α,l)"=1

1
)

+
( ∑

l∈P
(α,l)"=1

1
) 2

)

=

∑

α∈A

1

(#P)2

∑

l∈P

( α

l2

)
+

∑

α∈A

1

(#P)2

∑

l,q∈P

l "=q

( α

lq

)

+
∑

α∈A

1

(#P)2

(
2
(∑

l∈P

( α

l

)) ∑

l∈P
(α,l)"=1

1 +
( ∑

l∈P
(α,l)"=1

1
) 2

)

≤
#A

#P
+ max

l,q∈P

l "=q

∣∣∣
∑

α∈A

( α

lq

)∣∣∣ +
2

#P

∑

α∈A

∑

l∈P
(α,l)"=1

1 +
1

(#P)2

∑

α∈A

( ∑

l∈P
(α,l)"=1

1
) 2

.

This completes the proof of the lemma.

Remark 2.2 In the above proof, the fact that P was a set of primes did not play a
crucial role. Thus, the main idea of the proof has the potential for wider applications.

2.2 The Chebotarev Density Theorem

Another important tool for the proofs of our main results is the Chebotarev density
theorem, which we recall below.

We let L/Q be a finite Galois extension with group G, of degree nL and discrimi-
nant dL, and we denote by ζL the Dedekind zeta function of L. We let C be a conjugacy
set in G, that is, C is a union of conjugacy classes of G. The set of conjugacy classes
contained in C is denoted by C̃ , and the set of conjugacy classes contained in G is
denoted by G̃. We denote by P(L/Q) the set of rational primes p which ramify in
L/Q and set

M(L/Q) := (#G)
∏

p∈P(L/Q)

p.

We define

πC (x, L/Q) := #{p ≤ x : p unramified in L/Q, σp ⊆ C},

where σp is the Artin symbol of p in the extension L/Q .
The Chebotarev density theorem asserts that, as x → ∞,

πC (x, L/Q) ∼
#C

#G
li x,
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where li x =

∫ x

2
1

log t dt is the logarithmic integral.

Effective versions of this theorem (that is, versions with explicit error terms) are
what we actually need in our calculations. They were first derived by J. Lagarias and
A. Odlyzko in 1976 (see [LO]), refined by J.-P. Serre (see [Se3]), and subsequently
improved by Kumar Murty, Ram Murty and N. Saradha (see [MMS] and [MM]).
We state them below.

Theorem 2.3 Assuming GRH for the Dedekind zeta function of L, we have that, for
all x ≥ 3,

πC (x, L/Q) =

#C

#G
li x + O

(
(#C)x1/2

( log |dL|
nL

+ log x
))

.

The implied O-constant is absolute.

This version of the effective Chebotarev density theorem is slightly more refined
than a statement given in [LO] and is due to Serre (see [Se3, p. 133]).

Unconditional versions of the effective Chebotarev density theorem are also very
useful, however the error terms obtained are not as good as the conditional ones:

Theorem 2.4 There exist positive constants A, b and b ′, with A effective and b, b ′

absolute, such that, if
log x ≥ bnL(log |dL|)2,

then

πC (x, L/Q) =

#C

#G
li x + O

( #C

#G
li
(

x exp
(
−b ′ log x

max{|dL|1/nL , log |dL|}

)))

+ O
(

(#C̃)x exp
(
−A

√
log x

nL

))
.

The implied O-constants are absolute.

This is a consequence of the unconditional Chebotarev density theorem in [LO,
formulae (1.6), (1.7), (1.8)] and of Stark’s bound given in [St] for the exceptional zero
of ζL as defined in [LO, pp. 455–456]. Of course, the first O-term can be dropped if
there does not exist such an exceptional zero.

By assuming, in addition to GRH, conjectures AHC and PCC, one can improve
the error term in the asymptotic formula for πC (x, L/Q). For formulations of con-
jectures AHC and PCC we refer the reader to [RM3].

Theorem 2.5

1. Assuming GRH and AHC for the Artin L-functions attached to the irreducible char-
acters of G, we have that, for all x ≥ 3,

πC (x, L/Q) =

#C

#G
li x + O

(
(#C)1/2x1/2 log

(
M(L/Q)x

))
.
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2. Assuming GRH, AHC and PCC for the Artin L-functions attached to the irreducible
characters of G, we have that, for all x ≥ 3,

πC (x, L/Q) =

#C

#G
li x + O

(
(#C)1/2x1/2

( #G̃

#G

) 1/4

log(M(L/Q)x)
)

.

The implied O-constants are absolute.

These results were obtained by Kumar Murty, Ram Murty and N. Saradha, and
Kumar Murty and Ram Murty, respectively (see [MMS, MM]).

The following result is often very helpful in estimating the error terms in the ef-
fective Chebotarev density theorem. Its proof is given in [Se3, p. 130] and is based on
a result of Hensel (see [Se3, pp. 126–127]).

Lemma 2.6 Let L/Q be a finite Galois extension of degree nL and discriminant dL.
Using the notation introduced above, we have that

nL

2

∑

p∈P(L/Q)

log p ≤ log |dL| ≤ (nL − 1)
∑

p∈P(L/Q)

log p + nL log nL.

2.3 Some Group Theory

For a positive integer k, let us denote by GL2(Z/kZ) the group of 2× 2 invertible ma-
trices with entries in the coset residues modulo k, and by det and tr the determinant
and trace, respectively, of any matrix in this group.

Lemma 2.7 Let q > 2 be a prime and d, t ∈ Z/qZ be fixed. Then, for d #= 0,

#{g ∈ GL2(Z/qZ) : det g = d, tr g = t} = q
(

q +
( t2 − 4d

q

))
,

where ( ·
q ) denotes the Legendre symbol modulo q.

Proof The cardinality in question is the number of solutions α, β, γ, δ (mod q) of
the system of equations

αδ − βγ = d,(4)

α + δ = t.(5)

Since the last equation determines δ in terms of α, the number of solutions α, β, γ, δ
(mod q) of (4) and (5) is also the number of solutions α, β, γ (mod q) of the equa-
tion

(6) α2 − αt + βγ + d = 0.
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We see that equation (6) has degree 2 in α, and so the total number of solutions is

∑

β(mod q)

∑

γ(mod q)

(
1 +

( t2 − 4βγ − 4d

q

))

= q2 +
∑

β(mod q)
β "=0

∑

γ(mod q)

( t2 − 4βγ − 4d

q

)
+ q

( t2 − 4d

q

)
.

Since the inner sum over γ is zero, we obtain the result.

Corollary 2.8 Let l and q be two distinct odd primes, and d, t ∈ Z/lqZ be fixed with
(d, lq) = 1. Then

#{g ∈ GL2(Z/lqZ) : det g = d, tr g = t} = lq
(

l +
( t2 − 4d

l

))(
q +

( t2 − 4d

q

))
,

where ( ·l ) and ( ·
q ) denote the Legendre symbols modulo l and q, respectively.

Proof This is an immediate consequence of Lemma 2.7 and the ring isomorphism
GL2(Z/lqZ) 1 GL2(Z/lZ) × GL2(Z/qZ).

Corollary 2.9 Let l and q be two distinct odd primes. Then

#{g ∈ GL2(Z/qZ) : 4 det g = (tr g)2} = q2(q − 1),

#{g ∈ GL2(Z/lqZ) : 4 det g = (tr g)2} = l2q2(l − 1)(q − 1).

Proof We sum the formula of Lemma 2.7 over d and t modulo q satisfying t2
=

4d, t #≡ 0(mod q), and apply the ring isomorphism GL2(Z/lqZ) 1 GL2(Z/lZ) ×
GL2(Z/qZ).

3 Proof of Theorem 1.2

We want to find an upper bound for the number of primes p ≤ x, p /∈ SE, for which
Q(πp) = Q(

√
−D), that is, for which

4p − a2
p = Dm2

for some nonzero integer m. For this, it is enough to find an upper bound for the
number of squares in the multi-set

A := {D(4p − a2
p) : p ≤ x}.

We use the square sieve (Theorem 2.1) with A as above and with the set P of primes
defined by

P := {q a prime : z < q ≤ 2z},
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where

(7) z = z(x) > aN(log log N)
1
2

is a positive real number depending on x and to be chosen later, with a denoting a
positive absolute constant also to be specified later. For a nonzero integer α let

(8) νz(α) := #{l ∈ P : l|α}.

Then, from Theorem 2.1 and the inequality νz(α) , log α, we obtain

S(A) = #{α ∈ A : α is a square}

≤
#A

#P
+ max

l,q∈P

l "=q

∣∣∣
∑

α∈A

( α

lq

)∣∣∣ + O

(
1

#P

∑

α∈A

log α +
1

(#P)2

∑

α∈A

(log α)2

)
.(9)

We easily observe that, by elementary estimates, we have

(10) #A ,
x

log x
, #P 3

z

log z
,

∑

α∈A

log α =

∑

p≤x

log
(

D(4p − a2
p)

)

= π(x) log D +
∑

p≤x

log(4p − a2
p)

≤ π(x) log D +
∑

p≤x

log(4p)

,
x log D

log x
+ x,(11)

and

∑

α∈A

(log α)2
=

∑

p≤x

(log D)2 + 2(log D)
∑

p≤x

log(4p − a2
p) +

∑

p≤x

(
log(4p − a2

p)
) 2

,
x(log D)2

log x
+ x log D + x log x.(12)

Thus, in order to obtain an upper estimate for S(A), it suffices to find an upper bound
for maxl,q∈P

l "=q

|
∑

α∈A
( α

lq )|.
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Let l, q ∈ P, l #= q be fixed. We write

∑

α∈A

( α

lq

)
=

∑

p≤x
p!lqN

(
D(4p − a2

p)

lq

)
+ O(log N)

=

( D

lq

) ∑

t(mod lq)

∑

d(mod lq)

∑

p≤x,p!lqN
ap≡t(mod lq)
p≡d(mod lq)

( 4p − a2
p

lq

)
+ O(log N)

=

( D

lq

) ∑

t(mod lq)

∑

d(mod lq)
(d,lq)=1

( 4d − t2

lq

)
πE(x, lq, t, d) + O(log N),(13)

where

(14) πE(x, lq, t, d) := #{p ≤ x : p ! lqN, ap ≡ t(mod lq), p ≡ d(mod lq)}.

We shall use effective versions of the Chebotarev density theorem to estimate πE(x, lq,
t, d) for (d, lq) = 1. Before giving the details, we need to recall a few properties of E.

For any positive integer k we denote by E[k] the group of k-division points of E,
and by Q(E[k]) the field obtained by adjoining to Q the x- and y-coordinates of the
k-division points of E. We know that Q(E[k])/Q is a finite Galois extension, whose
ramified primes lie among the prime divisors of k and of the conductor N of E. We
denote by n(k), d(k) and Gk the degree, discriminant and Galois group, respectively,
of Q(E[k])/Q . One can define a natural Galois representation

φk : Gk → GL2(Z/kZ),

which is easily seen to be injective. Thus, using Lemma 2.6 and recalling that

# GL2(Z/kZ) = k4
∏

p|k

p prime

(
1 −

1

p

)(
1 −

1

p2

)
,

we deduce that

log |d(k)|
n(k)

≤ log n(k) + log(kN) ≤ 5 log k + log N,

and, consequently, that
(15)

d(k)
1

n(k) ≤ k5N, log |d(k)| ≤ k4 log(k5N) and n(k)
(

log |d(k)|
) 2 ≤ k12

(
log(k5N)

) 2
.

If E is a non-CM elliptic curve (as in our situation), then, by deep results of Serre,
there exists a positive integer A(E), depending on E, such that φk is surjective for
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any
(

k, A(E)
)

= 1 (see [Se1] and [acC2, Appendix]). Therefore for such k we have
Gk = GL2(Z/kZ). We also know that there exists a positive absolute constant a such

that if p > aN(log log N)
1
2 , then p ! A(E) (see [acC2, Theorem 2]). Therefore, with

this choice of a in (7) we have that
(

lq, A(E)
)

= 1 for our fixed primes l, q, and so
the representation φlq is bijective. Another important property of φk is that

tr φk(σp) ≡ ap(mod k)

and

det φk(σp) ≡ p(mod k)

for any prime p ! N and any integer k such that (p, kN) = 1, where σp denotes the
Artin symbol of p in Q(E[k])/Q .

Now let us look at φlq for our fixed distinct primes l, q ∈ P and let us set

Clq(t, d) := {g ∈ Glq : p ! lqN, det φlq(g) = d, tr φlq(g) = t}.

Since, from the above, Glq 1 GL2(Z/lqZ), Corollary 2.8 provides us with precise
information about #Clq(t, d). We also observe that

(16) πE(x, lq, t, d) = #{p ≤ x : p ! lqN, φlq(σp) ⊆ Clq(t, d)},

hence we can now use the Chebotarev density theorem to estimate πE(x, lq, t, d) for
(d, lq) = 1.

(a) Assuming GRH for the Dedekind zeta function of Q(E[lq]) and using Theo-
rem 2.3 and Corollary 2.8, we obtain that, for (d, lq) = 1,

πE(x, lq, t, d) =

#Clq(t, d)

#Glq
li x + O

(
(#Clq(t, d)x

1
2 log(lqNx)

)

=

(
l + ( t2−4d

l )
)(

q + ( t2−4d
q )

)

(l − 1)(l2 − 1)(q − 1)(q2 − 1)
li x + O

(
l2q2x

1
2 log(lqNx)

)
.

Then (13) becomes

∑

α∈A

( α

lq

)
=

( D

lq

) lq

(l2 − 1)(l − 1)(q2 − 1)(q − 1)
li x

∑

t(mod lq)

∑

d(mod lq)
(d,lq)=1

( 4d − t2

lq

)

+ O

( ∑

t(mod lq)

∑

d(mod lq)

l + q

(l2 − 1)(l − 1)(q2 − 1)(q − 1)
li x

)

+ O
( ∑

t(mod lq)

∑

d(mod lq)

l2q2x
1
2 log(lqNx)

)
.
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We observe that
∑

(d,q)"=1( 4d−t2

q ) = (−t2

q ), so, by the Chinese remainder theorem, we

have that, for any integer t ,

∣∣∣
∑

d(mod lq)
(d,lq)=1

( 4d − t2

lq

)∣∣∣ ≤ 1.

Therefore

(17)
∑

α∈A

( α

lq

)
= O

(( 1

l
+

1

q

) x

log x

)
+ O

(
l4q4x

1
2 log(lqNx)

)
.

By plugging (10)–(12) and (17) into (9) we get

S(A) ,
x log z

z log x
+

x

z log x
+ z8x

1
2 log(zNx)

+
x log z

z log x
log D +

x log z

z

+
x(log z)2

z2 log x
(log D)2 +

x(log z)2

z2
log D +

x(log x)(log z)2

z2
.

Now we choose
z := x

1
18

and notice that PE

(
Q(

√
−D), x

)
= 0 for (square-free) D > 4x, which allows us to

assume log D , log x. This gives us that PE

(
Q(

√
−D), x

)
≤ S(A) ,N x17/18 log x,

completing the proof of the first part of the theorem.

(b) We assume GRH and AHC and use part 1 of Theorem 2.5 to improve the
error term in the asymptotic formula for πE(x, lq, t, d) for (d, lq) = 1. We obtain

πE(x, lq, t, d) =

(
l + ( t2−4d

l )
)(

q + ( t2−4d
q )

)

(l − 1)(l2 − 1)(q − 1)(q2 − 1)
li x + O

(
lqx

1
2 log(lqNx)

)
.

Proceeding as in part (a), we see that (13) becomes

(18)
∑

α∈A

( α

lq

)
= O

(( 1

l
+

1

q

) x

log x

)
+ O

(
l3q3x

1
2 log(lqNx)

)
.

We plug (10)–(12) and (18) into (9) and get

S(A) ,
x log z

z log x
+

x

z log x
+ z6x

1
2 log(zNx)

+
x log z

z log x
log D +

x log z

z

+
x(log z)2

z2 log x
(log D)2 +

x(log z)2

z2
log D +

x(log x)(log z)2

z2
.
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Now we choose

z := x
1
14 .

Arguing as in part (a), this gives us PE

(
Q(

√
−D), x

)
≤ S(A) ,N x

13
14 log x, which

completes the proof of the second part of the theorem.

(c) Let us assume GRH, AHC and PCC and use part 2 of Theorem 2.5 to obtain
even better error terms for πE(x, lq, t, d) for (d, lq) = 1. We remark that for the

primes l and q under consideration we have
#G̃lq

#Glq
=

# ˜GL2(Z/lqZ)
# GL2(Z/lqZ) =

1
(l2−l)(q2−q) .Then

πE(x, lq, t, d) =

#Clq

#Glq
li x + O

(
(#Clq)

1
2

(
#(G̃lq)

#Glq

) 1
4

x
1
2 log(lqNx)

)

=

(
l + ( t2−4d

l )
)(

q + ( t2−4d
q )

)

(l − 1)(l2 − 1)(q − 1)(q2 − 1)
li x + O

(
l

1
2 q

1
2 x

1
2 log(lqNx)

)
.

Proceeding again as in part (a), we see that (13) becomes

(19)
∑

α∈A

( α

lq

)
= O

(( 1

l
+

1

q

) x

log x

)
+ O

(
l

5
2 q

5
2 x

1
2 log(lqNx)

)
.

Then, from (9)–(12) and (19), we get

S(A) ,
x log z

z log x
+

x

z log x
+ z5x

1
2 log(zNx)

+
x log z

z log x
log D +

x log z

z

+
x(log z)2

z2 log x
(log D)2 +

x(log z)2

z2
log D +

x(log x)(log z)2

z2
.

Now we choose

z := x
1
12 .

As in part (a), this gives us PE

(
Q(

√
−D), x

)
≤ S(A) ,N x

11
12 log x, which completes

the proof of Theorem 1.2.

4 Proof of Theorem 1.3

We use the notation introduced in the proof of Theorem 1.2 and we proceed similarly,
however this time we are not assuming GRH or any other hypotheses. More precisely,
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we apply the square sieve (Theorem 2.1) to the multi-set of integers A := {D(4p −
a2

p) : p ≤ x} and the set of primes P := {q : z ≤ q ≤ 2z}, where

(20) z := c
(log x)

1
24

(log log x)
1

12

for some positive constant c to be fixed later. We obtain

PE

(
Q(

√
−D), x

)
≤ S(A)

,
x log z

z log x

+ max
l,q∈P

l "=q

∣∣∣
( D

lq

) ∑

t(mod lq)

∑

d(mod lq)
(d,lq)=1

( 4d − t2

lq

)
πE(x, lq, t, d)

∣∣∣

+
log z

z

∑

p≤x

∑

z≤q≤2z

q|D(4p−a2
p)

1 +
( log z

z

) 2 ∑

p≤x

( ∑

z≤q≤2z

q|D(4p−a2
p)

1
) 2

.(21)

Here πE(x, lq, t, d) is defined as in (14) and can be estimated by using the uncondi-
tional effective Chebotarev density theorem. Indeed, we first observe that πE(x, lq,
t, d) is also given by (16) and that if x is large enough so that z / N(log log N)

1
2 ,

then the Galois representation φlq is surjective for any distinct primes l, q ∈ P. Thus
the sizes of the conjugacy sets Clq(t, d) appearing in (16) can be estimated once again
using Corollary 2.8. Then we observe that, from (15) with k = lq and from (20),

n(lq)
(

log |d(lq)|
) 2 ≤ 25(lq)12

(
log(lqN)

) 2 ≤ 25 · 412z24
(

log(4z2N)
) 2 ≤

log x

c ′

for some positive absolute constant c ′, depending on c. If c is chosen sufficiently
small, then the hypothesis of Theorem 2.4 is satisfied. Thus from Theorem 2.4,
Corollary 2.8 and again (15) we obtain that, for (d, lq) = 1, there exists a positive
absolute constant A ′ such that

πE(x, lq, t, d) = #{p ≤ x : p ! lqN, φlq(σp) ⊆ Clq(t, d)}

=

(
l + ( t2−4d

l )
)(

q + ( t2−4d
q )

)

(l − 1)(l2 − 1)(q − 1)(q2 − 1)
li x

+ O

(
x

l2q2 log x
exp

(
−

A ′ log x

(lq)5N

))

+ O

(
x exp

(
−A ′

√
log x

l4q4

))
.
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Arguing as in the proof of Theorem 1.2 and keeping in mind our choice of z we
further get

max
l,q∈P

l "=q

∣∣∣
( D

lq

) ∑

t(mod lq)

∑

d(mod lq)
(d,lq)=1

( 4d − t2

lq

)
πE(x, lq, t, d)

∣∣∣

,
x

z log x
+

x

log x
exp

(
−

A ′ log x

z10N

)
+ xz4 exp

(
−A ′

√
log x

z8

)

,
x

z log x
.(22)

It remains to estimate the last two terms of (21). Using notation (8) we write

∑

p≤x

∑

z≤q≤2z

q|D(4p−a2
p)

1 ≤
∑

p≤x

∑

z≤q≤2z
q|D

1 +
∑

p≤x

∑

z≤q≤2z

q|(4p−a2
p)

1

,
x

log x
νz(D) +

z

log z
log N

+
∑

z≤q≤2z

#{p ≤ x : p ! qN, 4p − a2
p ≡ 0(mod q)},(23)

and

∑

p≤x

( ∑

z≤q≤2z

q|D(4p−a2
p)

1
) 2

≤
∑

p≤x

( ∑

z≤q≤2z

q|D(4p−a2
p)

1 +
∑

z≤l,q≤2z
l "=q

lq|D(4p−a2
p)

1
)

,
x

log x

(
νz(D) + νz(D)2

)
+

z2

(log z)2
log N

+
∑

z≤q≤2z

#{p ≤ x : p ! qN, 4p − a2
p ≡ 0(mod q)}

+
∑

z≤l,q≤2z
l "=q

#{p ≤ x : p ! lqN, 4p − a2
p ≡ 0(mod lq)}.(24)

We use the properties of the Galois representations φl and φlq recalled in Section 3 to
write

#{p ≤ x : p ! qN, 4p − a2
p ≡ 0(mod q)} = #{p ≤ x : p ! qN, φq(σp) ⊆ Dq}

and

#{p ≤ x : p ! lqN, 4p − a2
p ≡ 0(mod lq)} = #{p ≤ x : p ! lqN, φlq(σp) ⊆ Dlq},
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where

Dq = {g ∈ GL2(Z/qZ) : 4 det g = (tr g)2}

and

Dlq = {g ∈ GL2(Z/lqZ) : 4 det g = (tr g)2}.

We emphasize that x is large enough so that the representations φl and φlq are surjec-
tive. From Corollary 2.9 we know that

#Dq = q2(q − 1) and #Dlq = l2q2(l − 1)(q − 1),

and so, by applying the unconditional effective Chebotarev density theorem to
Q(E[q])/Q and Q(E[lq])/Q , respectively, we find that for some positive absolute
constant A ′ ′ we have

#{p ≤ x : p ! qN, φq(σp) ⊆ Dq} =

q

q2 − 1
li x + O

(
x

q log x
exp

(
−

A ′ ′ log x

q5N

))

+ O

(
qx exp

(
−A ′ ′

√
log x

q4

))
,

#{p ≤ x : p ! lqN, φlq(σp) ⊆ Dlq} =

lq

(l2 − 1)(q2 − 1)
li x

+ O

(
x

lq log x
exp

(
−

A ′′ log x

l5q5N

))

+ O

(
lqx exp

(
−A ′ ′

√
log x

l4q4

))
.

We plug these estimates into (23) and (24) and obtain

(25)
∑

p≤x

∑

z≤q≤2z

q|D(4p−a2
p)

1 ,N
x

log x
νz(D) +

x

(log x)(log z)
+

z

log z

and

(26)
∑

p≤x

( ∑

z≤q≤2z

q|D(4p−a2
p)

1
) 2

,N
x

log x
νz(D)2 +

x

(log x)(log z)
+

z2

(log z)2
.

Combining (20), (21), (22), (25) and (26) and using the trivial bounds νz(D) , z
log z
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and 1 + νz(D) ≤ 1 + ν(D) we deduce that

PE

(
Q(

√
−D), x

)
,N

x log z

z log x

(
1 + νz(D)

)(
1 +

log z

z
νz(D)

)

,N
x log z

z log x

(
1 + νz(D)

)
,

,N
x(log log x)

13
12

(log x)
25
24

(
1 + νz(D)

)

,N
x(log log x)

13
12

(log x)
25
24

(
1 + ν(D)

)
.

This completes the proof of Theorem 1.3.

5 Proof of Corollary 1.5

Now we want to give a lower bound for #DE(x). We recall that there are o( x
log x )

supersingular primes p ≤ x of E (see [Se3, p. 174]), thus we have

π(x) = o
( x

log x

)
+

∑

D∈DE(x)

PE

(
Q(

√
−D), x

)
,

where π(x) denotes the number of primes ≤ x. This implies that

(27) #DE(x) ≥
(

1 − o(1)
) x/ log x

maxD≤4x PE

(
Q(

√
−D), x

) .

By inserting the different upper bounds provided by Theorem 1.2 into (27), we
obtain parts (a)–(c) of Corollary 1.5.

Inequality (27) is, however, too weak to allow us to deduce something interesting
by simply using Theorem 1.3. We proceed differently, as follows. Suppose that x is a
sufficiently large number so that we have

(28) #
(
DE(∞) ∩ [1, 4x]

)
< (log x)

1
24 .

As in (20), we define, for any real y,

Z(y) := c
(log y)1/24

(log log y)1/12
.

By Theorem 1.3 we have that, for any y > x and for some c0 > 0,

π(y) = o
( y

log y

)
+

∑

D∈DE(y)

PE

(
Q(

√
−D), y

)

≤ c0
y(log log y)13/12

(log y)25/24

∑

D∈DE(y)

(
1 + νZ(y)(D)

)
+ o

( y

log y

)
.
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After division and after using (28), we get

1

2c0
·

(log y)1/24

(log log y)13/12
≤

∑

D∈DE(y)

(
1 + νZ(y)(D)

)

=

∑

D∈DE(y)
D≤4x

(
1 + νZ(y)(D)

)
+

∑

D∈DE(y)
4x<D≤4y

(
1 + νZ(y)(D)

)

≤
∑

D∈DE(∞)
D≤4x

(
1 + νZ(y)(D)

)
+

∑

D∈DE(y)
4x<D≤4y

(
1 + νZ(y)(D)

)

≤ 2(log x)
1

24 ·
log x

log Z(y)
+

∑

D∈DE(y)
4x<D≤4y

(
1 + νZ(y)(D)

)
,

under the assumption y ≤ ex. Thus, if we have the strict inequality

(29)
1

2c0
·

(log y)1/24

(log log y)13/12
> 2

(log x)25/24

log Z(y)
,

we can deduce that DE(∞) contains at least an element between 4x and 4y. It is now
easy to check that (29) is satisfied with the choice

y = exp
(

(log x)26
)
.

The last point of Corollary 1.5 is an easy consequence of the fact that, if (vn)n

is a sequence of positive numbers satisfying vn+1 ≤ exp
(

(log vn)26
)

for sufficiently
large n, then for x ≥ x0 we have #{n ≤ x : vn ≤ x} / log log log x. The proof of
Corollary 1.5 is now completed.

Remark 5.1 We recall that [Se3, Theorem 20] proves that for any integer h we have

#{p ≤ x : p /∈ SE, ap = h} = o
( x

log x

)
.

Thus in the last statement of Corollary 1.5 we can modify the definition of DE(x)
by inserting the extra conditions “ap does not belong to a fixed finite set of values”
without changing the rate of growth of the sequence (Dn)n≥1. We also recall that the
case ap = 1 corresponds to what is known as anomalous primes.

6 Concluding Remarks

There is a cognate set of Lang–Trotter conjectures concerning the frequency of values
of the ap’s. A special case of these conjectures concerns the distribution of supersin-
gular primes, which was studied by E. Fouvry and Ram Murty in [FM1, FM2]. It was
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clear to the authors that the methods used to study these questions could not be em-
ployed in the study of the frequency of the “Frobenius fields” Q(πp), even though the
conjectures seem to be of the same species. Perhaps this was also noticed by Serre (see
especially the note on [Se3, p. 191]). In fact, it was this remark of Serre that prompted
the second and third authors of the present paper to consider the square sieve as a tool
to attack this question (more than 10 years ago). Unfortunately, nothing was pub-
lished. Thanks to the first author, our memories were revived, and the technique
has been streamlined with effect, not only to the questions considered here, but to
others as well (see [acC1]). Certainly, it can be used to study the Frobenius fields
for non-CM elliptic curves defined over a number field, and not only over Q . The
square sieve can also be applied to other questions of arithmetic-geometric interest,
as described in the forthcoming book [CM].

We emphasize that the square sieve is a simpler technique than the more conven-
tional sieve methods and that our results are uniform in D, whereas in [Se4, Remark
631, p. 715] no such uniformity was claimed. We are grateful to J-P. Serre for his
extensive comments comparing his methods alluded to in [Se3] and [Se4] with ours,
developed in this paper. As these remarks may be of value in future research, we
record here their quintessence.

First, if in our application of the square sieve we use PGL2 instead of GL2, as in
[Se3], we can improve the 17/18 exponent in Theorem 1.2 to 13/14. Similar im-
provements can be obtained for parts (b) and (c) of Theorem 1.2 (11/12 and 9/10,
respectively). A minor improvement can also be achieved in Theorem 1.3. Under
GRH, Serre’s application of Selberg’s sieve (referred to in [Se3, p. 191]) will lead to
the same exponents.

Secondly, with regard to the brief remark in [Se4, p. 715], the following elabora-
tion was given by Serre: Theorem 10 of [Se3] is applicable in a wider context, which
will be illustrated through three examples.

Let L be a number field and let E, E ′ be two non-CM elliptic curves defined over L
which are not isogenous over Q . Let C(x) be the number of prime ideals v of L with
NL/Q (v) ≤ x and for which E and E ′ have the same Frobenius trace. Then, under
GRH, C(x) = OE,E ′,L(x

11
12 ) (here, the O-constant depends in an unspecified way on

E, E ′ and L). To see this, consider the Lie group PGL2 × PGL2, which is of dimension
6 in the setting of Theorem 10 of [Se3]. There is a natural class function t on PGL2

given by t(g) := tr(g)2/ det g. The equation t(g) = t(g ′) defines a divisor D in
PGL2 × PGL2, which is invariant under conjugation. Now let us look at the l-adic
representations attached to E and E ′. They give a homomorphism

Gal(Q/L) → PGL2(Q l) × PGL2(Q l),

where Q l denotes the field of l-adic rational numbers. For a prime v coprime to
l, where E and E ′ have the same Frobenius trace, the Frobenius element of v in
PGL2(Q l) × PGL2(Q l) is a Q l-point of D. Applying Theorem 10 of [Se3] gives
the result stated above.

Keeping the above setting, another application concerns the problem of counting
the number of primes v which give rise to the same Frobenius fields. That is, we want
to count the number of primes v with NL/Q (v) ≤ x such that the field generated
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by the eigenvalue of the Frobenius Frobv at v of E is the same as the field generated
by the eigenvalue of Frobv of E ′. If we confine our attention to first degree primes
v and and if the field generated is neither Q(i), nor Q(e2πi/3), then the equality of
the Frobenius fields implies that tr

(
Frobv(E)

)
= ± tr

(
Frobv(E ′)

)
. Thus, the class

function defined in the previous paragraph takes the same values and, as before, we
can take the same divisor D and apply Theorem 10 of [Se3]. The case Q(i) leads to
t(g)2

= t(g ′)2, and the case Q(e2πi/3) leads to t(g)3 − 3t(g) = t(g ′)3 − 3t(g ′) (note
that the precise form of the equation does not matter). In any case, we are led to an
estimate of OE,E ′,L(x

11
12 ). Again, the O-constant depends in an unspecified way on E,

E ′ and L.
Finally, we can apply Theorem 10 of [Se3] to the Lang–Trotter conjecture dis-

cussed in this paper and improve the exponent 9/10 mentioned in Section 1 to
7/8. To be precise, let E be an elliptic curve defined over a number field L and let
K = Q(

√
−D) be an imaginary quadratic field. Let G = PGL2 ×N, where N is the

normalizer of the maximal torus of PGL2, be the Lie group required by Theorem 10
of [Se3]. We define a representation

Gal(Q/L) → PGL2(Q l) × N(Q l)

as follows. The first component is given by the action of Gal(Q/L) on the l-adic Tate
module composed with the natural map

Gal(Q/L) → GL2(Q l) → PGL2(Q l).

To describe the second component, let h, w be the class number and the number of
roots of unity of K. For every non-zero ideal a of K define f (a) as the w-th power of
a generator of the principal ideal a

h. This is a well-defined Hecke character of K. It is
associated with an l-adic representation

Gal(K/K) → K∗
l := Q∗

l × Q∗
l ,

whose two components we denote by f1 and f2. The product f1 f2 is the hw-th power
of the cyclotomic character. As f1 is a 1-dimensional representation of Gal(K/K), the
induced representation of f1 is a 2-dimensional representation of Gal(Q/Q). That
is, we have a map

Gal(Q/Q) → GL2(Q l).

By restriction to Gal(Q/L), we get a representation

r : Gal(Q/Q) → PGL2(Q l),

and hence
r : Gal(Q/L) → PGL2(Q l).

The image of r is contained in the normalizer N of the diagonal torus PGL2. Con-
fining our attention to primes v of degree one (as primes of degree 2 or higher give
a contribution of O(x

1
2 ) to our estimate), we seek to construct a divisor D as in the
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previous two examples. This means that we must find an algebraic relation between
t(g) and t(g ′), where g and g ′ are the Frobenius elements defined by v. We consider
first the case when K is neither Q(i), nor Q(e2πi/3), so that w = 2. In this case we are
interested in those v whose Frobenius automorphism has eigenvalues a and b in K
with ab = NK/Q (v) and whose t-invariant is t(g) = (a + b)2/ab. On the other hand,

the eigenvalues r(Frobv) are a2h, b2h, so that t(g ′) = (a2h + b2h)2/(ab)2h. For each
m > 0 there is a well-defined polynomial P(m, z) such that

P

(
m,

(a + b)2

ab

)
=

(am + bm)2

(ab)m

for all a, b, as it is easily checked. We therefore have

t(g ′) = P
(

2h, t(g)
)
,

which is the required algebraic relation. The cases w = 4 and w = 6 are analogous.
Now, by applying Theorem 10 of [Se3], we get an estimate of OE,K(x

7
8 ) for our prob-

lem. Here, as in the previous examples, the error term depends on E and K in an
unspecified way.
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