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1 Introduction

Let E/K be an elliptic curve defined over a number field K and without complex multipli-

cation (CM). For a rational prime !, let K(E[!]) be the !th division field of E, which we know

is a finite Galois extension of K. By a celebrated result of Serre [18], there exists a posi-

tive constant c(E, K), depending on E and K, such that Gal(K(E[!])/K) ! GL2(Z/!Z) for all

! ≥ c(E, K). In [18, 19], Serre asked whether there exists a positive constant c(K), depend-

ing at most on K, such that Gal(K(E[!])/K) ! GL2(Z/!Z) for all ! ≥ c(K). An affirmative

answer to this question would have important diophantine applications, as illustrated

in [14].

Currently, there exist few results related to Serre’s question. In [13], Mazur

showed that for K = Q and for semistable elliptic curves E/Q without CM, one has

Gal(Q(E[!])/Q) ! GL2(Z/!Z) for any prime ! ≥ 11. In [2, 9, 12, 19], upper bounds in terms

of invariants of E (height and conductor) were given for the exceptional primes ! of an

elliptic curve E/Q, that is, for those primes ! for which Gal(Q(E[!])/Q) ! GL2(Z/!Z). More

ideas are still needed, however, to completely answer Serre’s question.

Naturally, one can ask if Serre’s question is true “on average” or “over function

fields.” The goal of our paper is to study these two questions. In [4], Duke gave an affir-

mative answer to the first question for a natural two-parameter family of elliptic curves

E/Q which contains every elliptic curve over Q. One of our aims is to obtain a more re-

fined average result; that is, to answer Serre’s question for “most” elements of a one-

parameter family of elliptic curves. This is the content of Theorem 1.3 below. We will also
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answer the second question. In particular, in Theorem 1.1 we show that the function-field

analogue of Serre’s question has an affirmative answer. As we will see, Theorems 1.1 and

1.3 are intimately connected via Theorem 1.2. We will also give an immediate application

of Theorem 1.2 to one of the classical Lang-Trotter conjectures on Frobenius traces.

Now let us state our main results rigorously. Let C/Fq be a proper, smooth, ge-

ometrically connected curve over the finite field Fq with q elements. Let K := Fq(C) be

the function field of C/Fq, and let E/K be an elliptic curve with nonconstant j-invariant

(i.e., j(E) ∈ K\Fq). For a rational prime ! invertible in K, let G! := Gal(K(E[!])/K) be the

Galois group of the !th division field of E/K. Choosing a basis of E[!] gives an embedding

G! ⊆ GL2(Z/!Z) and induces the following commutative diagram with exact rows:

1 H! G! 〈q〉 1

1 SL2(Z/!Z) GL2(Z/!Z)
det

(Z/!Z)× 1

(1.1)

where det is the determinant map. Let Fq denote an algebraic closure of Fq. The fixed field

of H! corresponds to the scalar extension (K(E[!])∩Fq)K/K given by adjoining a primitive

!th root of unity, so we call H! the geometric Galois group of K(E[!])/K.

In [7], Igusa showed that for rational primes !1 (= !2, distinct from char Fq, the

(geometric) extensions Fq(j(E), E[!i])/Fq(j(E)), i = 1, 2, are disjoint with respective (geo-

metric) Galois group SL2(Z/!iZ). In particular, the (geometric) extension K/Fq(j(E)) is

disjoint from Fq(j(E), E[!])/Fq(j(E)) for almost all primes !; that is, there exists a positive

constant c(E, K), depending on E and K, such that the geometric Galois group of K(E[!])/K

is SL2(Z/!Z) for all primes ! ≥ c(E, K), ! (= char Fq. The function-field analogue of Serre’s

question can thus be formulated as whether c(E, K) can be chosen to depend only on K.

We prove that this is indeed so.

Theorem 1.1. Let C/Fq be a proper, smooth, geometrically connected curve, and let K :=

Fq(C) be its function field. Then there exists a positive constant c(K), depending at most

on the genus of K, such that for any elliptic curve E/K with nonconstant j-invariant and

any rational prime ! ≥ c(K), ! (= char Fq, the geometric Galois group of K(E[!])/K is SL2(Z/

!Z). More precisely,

c(K) := 2 + max
{
! : ! prime,

1

12

[
! −

(
6 + 3 e2 +4 e3

)]
≤ genus(K)

}
, (1.2)

where e2 = +1 if ! ≡ 1(mod 4) and −1 otherwise, and e3 = +1 if ! ≡ 1(mod 3) and −1

otherwise. !
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The proof applies to any perfect field of characteristic 0 or equal to p = char Fq in

place of Fq. For example, we can apply it to an elliptic curve E/Q(t) with nonconstant j-

invariant (i.e., j(E) ∈ Q(t)\Q). For almost all t0 ∈ Q the special fiber Et0 of E is an elliptic

curve over Q. The average analogue of Serre’s question that we consider is whether there

is a universal constant c(Q) which depends at most on Q and works for “most” curves Et0

in the one-parameter family E/Q(t). We pass from the function field to the average ana-

logue of Serre’s question via the following application of Theorem 1.1 and of a function-

field version of the Chebotarev density theorem due to [17].

Theorem 1.2. Let A(t), B(t) ∈ Z[t] be fixed polynomials such that the j-invariant j(E) of

the curve

E/Q(t) : y2 = x3 + A(t)x + B(t) (1.3)

is nonconstant. Let∆A,B(t) := −16[4A(t)3+27B(t)2] be the discriminant of the curve E. Let

p (= ! be fixed rational primes such that the specialization of j(E) to Fp(t) is nonconstant

and ! ≥ 17. Let τ be a fixed integer. Then

#
{
t0 ∈ Fp : ∆A,B

(
t0

)
(≡ 0(mod p), ap

(
t0

)
≡ τ(mod !)

}
=

1

!
p + OA,B

(
!p1/2

)
,

(1.4)

where ap(t0) := p + 1 − |Et0(Fp)|, and the implied OA,B-constant depends at most on the

polynomials A, B. !

We note that for almost all primes p, the specialization E/Fp(t) will also be an elliptic

curve with nonconstant j-invariant.

The average result is as follows.

Theorem 1.3. Let A(t), B(t) ∈ Z[t] be fixed polynomials such that the j-invariant of the

curve

E/Q(t) : y2 = x3 + A(t)x + B(t) (1.5)

is nonconstant. Let ∆A,B be as in Theorem 1.2, and let S be the set of rational solutions to

∆A,B(t) = 0. Let T > 0 be fixed and set

F(T) :=

{
m

n
∈ Q\S : m,n ∈ Z, n (= 0, (m,n) = 1, max

{
|m|, |n|

}
≤ T

}
. (1.6)
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For rational primes ! ≥ 17, set

E!(T) :=
{
t0 ∈ F(T) : Gal

(
Q

(
Et0 [!]

)
/Q

)
! GL2(Z/!Z)

}
,

E(T) :=
⋃

!≥17

E!(T). (1.7)

Then

lim
T→∞

∣∣E(T)
∣∣

∣∣F(T)
∣∣ = 0. (1.8)

!

We remark that the restriction to primes ! ≥ 17 in the above result is imposed

by the hypothesis of Theorem 1.2, which, in turn, is imposed by Theorem 1.1. In partic-

ular, for ! = 13 one finds that the modular curve X0(13)/Q, which corresponds to a Borel

subgroup of GL2(Z/!Z), has genus zero and that the universal elliptic curve E → X0(13)
(cf. [8]) satisfies E13(T) = F(T). One could certainly try to estimate the union of E!(T)
for all primes !, but the techniques involved will be completely different from the ones

presented in this paper.

Finally, Theorem 1.2 can also be used to give unconditional estimates regarding

the Lang-Trotter conjecture on Frobenius traces.

Theorem 1.4. Let A(t), B(t) ∈ Z[t] be fixed polynomials such that the j-invariant of the

curve

E/Q(t) : y2 = x3 + A(t)x + B(t) (1.9)

is nonconstant. Let ∆A,B be as in Theorem 1.2. Let 0 (= τ ∈ Z and let T = T(x), x ∈ (0,∞).
Let F(T) be as in Theorem 1.3 and for t0 ∈ F(T) set

Pτ
t0

(x) := #
{
p ≤ x : p " Nt0 , ap(t0) = τ

}
, (1.10)

where Nt0 is the conductor of Et0/Q and, as in Theorem 1.2, ap(t0) := p + 1 − |Et0(Fp)|.
Then, as x → ∞,

1∣∣F(T)
∣∣

∑

t0∈C(T )

Pτ
t0

(x) + x3/4

log x
, (1.11)

provided that T , x. !

A brief account of the history of the problem of estimating Pτ
t0

(x) will be given in Sec-

tion 5.
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Notation 1.5. If not otherwise stated, p, ! denote rational primes and q a prime power.

As usual, GL2(Z/!Z) denotes the ring of 2 × 2 invertible matrices with entries in Z/!Z,
SL2(Z/!Z) denotes the subring of GL2(Z/!Z) consisting of matrices of determinant 1,

PGL2(Z/!Z) denotes the quotient GL2(Z/!Z)/(Z/!Z)×, and PSL2(Z/!Z) denotes the quo-

tient SL2(Z/!Z)/(±1). For a matrix m, det m and tr m denote its determinant and trace.

For a finite set S, #S and |S| are notations for its cardinality. For two real-valued func-

tions f, g with g positive we write f = O(g) or f + g if there exists a constant M > 0

such that |f(x)| ≤ Mg(x) for all x. Often we specify the implied constant M by writing

f = OM(g) or f +M g. If f and g are positive and f + g, g + f, then we write f , g. If g (= 0

and the domain of f is infinite, we write f ∼ g to denote limx→∞ f(x)/g(x) = 1.

2 Proof of Theorem 1.1

Let p := char Fq and let ! (= 2, 3, p be a fixed rational prime. The statement of Theorem 1.1

is geometric in that it suffices to prove the theorem after a finite extension of scalars.

Therefore we may assume that K contains a primitive !th root of unity (i.e., q ≡ 1(mod !))
and so H! = G!. Let us fix an embedding G! = Gal(K(E[!])/K) → SL2(Z/!Z).

We write X(1)/Fq for the j-line of elliptic curves and X(!)/Fq for the modular

curve parameterizing elliptic curves with level-! structure. Then there exists a natural

dominant morphism X(!) → X(1). There exist also dominant morphisms C
j→ X(1) and

C! → C corresponding to the finite extensions of function fields Fq(j) → K, given by

j .→ j(E), and K → K(E[!]), respectively (recall that j(E) is nonconstant). Moreover, there is

a natural action of SL2(Z/!Z) on X(!) and a G!-equivariant dominant morphism C! → X(!)
such that the following diagram commutes:

C! X(!)

C X(1)

(2.1)

The composite morphism C! → X(!)/G! factors through C! → C. In particular, the

genus of the quotient X(!)/G! is at most the genus of C. To prove Theorem 1.1, we show

that the quantity

N(!) := min
{

genus
(
X(!)/G

)
: G ! SL2(Z/!Z)

}
(2.2)

tends to infinity as ! does. This implies that G! = SL2(Z/!Z) for ! ≥ !0, where

!0 := 2 + max
{
! ′ : N(! ′) ≤ genus(C)

}
, (2.3)
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which is precisely what we want to prove. We note that in [11] Levin uses a similar argu-

ment to bound the prime-to-p part of the torsion subgroup of E(K) in terms of the genus

of C.

The action of SL2(Z/!Z) on X(!) factors through the quotient group Γ := PSL2(Z/

!Z). Since SL2(Z/!Z) has no subgroups of index 2, it suffices to show that the image of G!

is all of Γ . For every subgroup G ⊆ Γ we write πG for the projection X(!) → X(!)/G. We

observe that if H is a subgroup of G, then πG : X(!) → X(!)/G factors through πH : X(!) →
X(!)/H, hence the genus of X(!)/G is at most the genus of X(!)/H. Consequently,

N(!) = min
{

genus
(
X(!)/G

)
: G ! Γ, G maximal

}
. (2.4)

There are three cases of subgroups G ! Γ that we must consider:

(1) G = Γ ∩ B, where B ⊆ PGL2(Z/!Z) is the image of a Borel subgroup;

(2) G = Γ ∩ N(C), where N(C) ⊆ PGL2(Z/!Z) is the image of the normalizer of a

Cartan subgroup C;

(3) G is isomorphic to the permutation groups A4, S4, or A5.

Let us also note that every maximal subgroup of Γ is Γ ∩ H for some maximal

subgroup H ⊂ PGL2(Z/!Z), hence a priori [H : Γ ∩ H] ≤ 2. Moreover, the determinant

of any Borel subgroup or the normalizer of any Cartan subgroup of GL2(Z/!Z) is all of

(Z/!Z)×, thus [B : Γ ∩ B] = [N(C) : Γ ∩ N(C)] = 2. In both cases this follows from the

stronger fact that the determinant of a Cartan subgroup of GL2(Z/!Z) is all of (Z/!Z)×,
hence [C : Γ ∩C] = 2. In the last case above, A4 and A5 have no subgroups of index 2, and

A4 ⊂ S4 is the unique subgroup of index 2.

Now let us see how we can calculate the genus of X(!)/G for maximal subgroups

G ⊆ Γ . The morphism X(!) → X(!)/Γ = X(1) is separable and tamely ramified, hence the

same holds for the morphism X(!) → X(!)/G for every subgroup G ⊆ Γ . In particular, for

every G ⊆ Γ we may use the Riemann-Hurwitz formula to relate the genus of X(!) and the

genus of X(!)/G. For G = Γ this allows us to deduce the genus of X(!) because X(!)/Γ has

genus 0, and for other G it allows us to deduce the genus of X(!)/G. In all cases the genus

of X(!)/G is a geometric invariant, so it suffices to work over Fq.

For every geometric point x ∈ X(!) we write I(x) ⊆ Γ for the stabilizer of x. Then

the Riemann-Hurwitz formula gives

2 · genus
(
X(!)

)
− 2 = |G| ·

(
2 · genus

(
X(!)/G

)
− 2

)
+

∑

x∈X(!)

(∣∣I(x) ∩ G
∣∣ − 1

)
. (2.5)
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Table 2.1

G g(2) g(3) g(!) genus(X(!)/G)

(1) 0 0 0
1

24
(!− 3)(!− 5)(!+ 2)

Γ ∩ C
1+ esp e2

2

1+ esp e3

2
0

1

12

[
!2 − (6− esp)!+ 5− esp(3e2 +4e3)

]

Γ∩N(C)
!+ 1+ e2 − esp

2

1+ esp e3

2
0

1

24

[
!2 − (9− esp)!+ 17+ 3e2

− esp(6+ 3e2 +4e3)
]

Γ ∩ B
!(1+ e2)

2

!(1+ e3)
2

1
1

12
[!− (6+ 3e2 +4e3)]

A4 3 4 0
1

288

[
!3 − 6!2 − 51!+ (294+ 18e2 +32e3)

]

S4 9 4 0
1

576

[
!3 − 6!2 − 87!+ (582+ 54e2 +32e3)

]

A5 15 10 0
1

1440

[
!3 − 6!2 − 171!+ (1446+ 90e2 +80e3)

]

Γ
!(!+ e2)

2

!(!+ e3)
2

!+ 1 0

From Igusa we know that for πΓ (x) away from j = 0, 1728,∞, the inertia subgroup I(x)
is trivial, and in the remaining three cases it is cyclic of order n = 3, 2, !, respectively.

Moreover, there are |Γ |/n points in the respective fiber, and Γ permutes them transitively.

In particular, for a fixed cyclic subgroup I ⊆ Γ , the number of x such that I(x) = I depends

only on |I|. If I ⊂ G, then every x such that I(x) = I will be ramified in X(!) → X(!)/G.

We let γ(n) denote the number of I ⊆ Γ such that I ! Z/nZ. Similarly, we write g(n)

for the number of I ⊆ G such that I ! Z/nZ. This allows us to rewrite the ramification

part of (2.5) as follows:

∑

x∈X(!)

(∣∣I(x) ∩ G
∣∣ − 1

)
=

∑

n=2,3,!

g(n)
|Γ |

nγ(n)
(n − 1) = |Γ |

(
g(2)

2γ(2)
+

2g(3)

3γ(3)
+

(! − 1)g(!)

!γ(!)

)
.

(2.6)

(We gratefully acknowledge D. Allcock for pointing out this way of looking at the ramifi-

cation part.)

We need to compute the numbers |G|, g(n), genus(X(!)/G), and γ(n) as G ! Γ varies

over the maximal subgroups of Γ . Except for the orders, whose computation we leave as

an exercise for the reader, the results are summarized in Table 2.1, where esp = +1 if

C is split and −1 otherwise; e2 = +1 if ! ≡ 1(mod 4) and −1 otherwise; and e3 = +1 if

! ≡ 1(mod 3) and −1 otherwise. We will explain shortly how to calculate the g(n)’s (and

γ(n)’s).
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From Table 2.1 it is clear that N(5) = N(7) = N(11) = N(13) = 0, N(17) = 1, and

that

N(!) =
1

12

[
! −

(
6 + 3 e2 +4 e3

)]
> 0 (2.7)

for ! ≥ 17. Thus N(!) tends to infinity as ! does, which is what we wanted to show.

To complete the proof of the theorem, it remains to explain how to calculate the

g(n)’s. Computing g(n) for the three exceptional groups A4,S4,A5 is a relatively simple

exercise which, again, we leave for the reader. We note that the exceptional cases occur

only for certain values of ! (see [18, Section 2.5]), and the formulas in Table 2.1 for the

genus of X(!)/G will not be integral for general values of !.

Now we observe that every subgroup I ⊆ Γ of order ! is contained in a unique

Borel subgroup B ⊆ PGL2(Z/!Z), hence γ(!) is equal to the number of Borel subgroups of

GL2(Z/!Z). Sending a Borel subgroup to the unique line in (Z/!Z)2 stabilized by it gives

a bijection between Borel subgroups and lines, so there are γ(!) = ! + 1 Borel subgroups.

If G ! Γ is a maximal subgroup of order divisible by !, then taking I ⊆ G we see that

G = Γ ∩ B and g(!) = 1.

Finally, suppose I ⊆ Γ is a subgroup of order n = 2 or 3. It lies in a unique Cartan

subgroup Γ ∩ C, and whether or not C is split depends only on ! and n. We recall that

[C : Γ ∩C] = 2, so |Γ ∩C| = (!− esp)/2, and in particular, exactly one of the orders (!± 1)/2

is divisible by n. Combining this with the fact that C is cyclic,we deduce that g(n)(Γ∩C) =

(1 + esp en)/2. Every Cartan subgroup C ⊂ Γ is conjugate to every other subgroup of the

same type, so there are |Γ |/|N(C)| = !(! + esp)/2 Cartan subgroups of the same type. Then

γ(n) =
!(! + 1)

2
· 1 + en

2
+
!(! − 1)

2
· 1 − en

2
=
!
(
! + en

)

2
. (2.8)

Every Borel subgroup B contains exactly ! split Cartan subgroups and no nonsplit Cartan

subgroups, so g(n)(Γ∩B) = !(1+en)/2. Finally, Γ∩(N(C)\C) consists of |Γ∩C| involutions,

hence g(2)(N(C)) = g(2)(C) + (! − esp)/2 and g(3)(N(C)) = g(3)(C).

3 Proof of Theorem 1.2

The proof of Theorem 1.2 is an application of an effective version of the Chebotarev den-

sity theorem over function fields, due to Murty and Scherk [17, Theorem 2].

Let p and ! be rational primes as in the statement of the theorem. Let K := Fp(t)
be the specialization of Q(t) and let |K| be its set of places. We observe that there is a fi-

nite set of places S ⊆ |K| such that K(E[!])/K is unramified away from S. We may take S
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to be the set of places of bad reduction of E/K, in which case deg(S) will be bounded by

a constant which is independent of p. For every v ∈ |K|\S there is a well-defined conju-

gacy class Frv ⊆ Gal(K(E[!])/K) associated to v, the so-called Frobenius class, satisfying

deg(Frv) = pdeg(v).

Since K has genus zero, then the constant c(K) given by Theorem 1.1 is 15. By the

hypothesis of Theorem 1.2, we have ! ≥ 17, thus Theorem 1.1 implies that the geometric

Galois group of K(E[!])/K is SL2(Z/!Z). In other words, G! := Gal(K(E[!])/K) is the unique

subgroup of GL2(Z/!Z) containing SL2(Z/!Z) and satisfying det(G!) = 〈p〉. We set

Gp
! :=

{
g ∈ G! : det(g) = p

}
,

Cτ :=
{
g ∈ G! : tr(g) = τ

}
,

Cp
τ := Cτ ∩ Gp

! .

(3.1)

We notice that each of Gp
! and Cτ is a union of conjugacy classes, hence Cp

τ is as well.

Once we show that |Cp
τ | , !2, Theorem 1.2 is a specific instance of the effective Chebotarev

theorem due to Murty-Scherk that we mentioned above. We give a specialization of their

result taking advantage of our assumptions.

Proposition 3.1 (Murty-Scherk [17]). With K = Fp(t) as before, let F/K be a tamely ram-

ified, finite Galois extension and let U ⊂ |K| be the open complement of its ramification

locus Z ⊂ |K|. Let G := Gal(F/K) and suppose that C ⊆ G is a union of conjugacy classes.

Let Gp := {g ∈ G : det(g) = p} and Cp := C ∩ Gp. Then

#
{
v ∈ U

(
Fp

)
: Frv ⊆ Cp

}
=

∣∣Cp
∣∣

∣∣Gp
∣∣
∣∣U

(
Fp

)∣∣ + OK,Z

(∣∣Cp
∣∣1/2

p1/2
)
, (3.2)

where the implied OK,Z-constant depends only on the genus of K and the degree of Z. !

We apply this proposition to the extension K(E[!])/K, of Galois group G!, and to

the conjugacy set Cτ. As we noted in the proof of Theorem 1.1, K(E[!])/K is tamely ram-

ified. Let us also note that deg(Z) ≤ deg(S), hence the implicit OK,Z-constant may be

taken to be independent of ! and p. In our application, |Gp
! | = | SL2(Z/!Z)| = !(!2 − 1) and

|Cp
τ | = !(!+e ·!), where e ∈ {−1, 0, 1}, depending only on the quantity δ := τ2 −4p. It remains

to show how to calculate |Cp
τ |.

When δ = 0, every g ∈ Cp
τ has one eigenvalue b ∈ (Z/!Z)× of multiplicity two,

and g/b is an element of order !. Either g/b = 1, in which case g lies in the center of
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G!, or g lies in a unique Borel subgroup of GL2(Z/!Z). For each Borel subgroup there are

! − 1 such g, all of which are conjugate. Moreover, every Borel is conjugate, so there are

(! + 1)(! − 1) = !2 − 1 elements in the conjugacy class of g. Combining these we see that

∣∣Cp
τ

∣∣ =
(
!2 − 1

)
+ 1 = !2. (3.3)

When δ (= 0, every g ∈ Cp
τ has distinct eigenvalues and g ∈ C for some Cartan

subgroup C ⊆ GL2(Z/!Z). We know that C is split if δ is a square and nonsplit otherwise.

The conjugacy class of g contains exactly one other element of C which is given byωγω−1

for anyω ∈ N(C)\C (as before,N(C) is the normalizer of C in G!). Finally, by assumption,

g is nonscalar, thus it does not lie in the intersection of two different Cartan subgroups.

Hence

∣∣Cp
τ

∣∣ = !(! + 1), (3.4)

the number of split Cartans, if δ is a square, and

∣∣Cp
τ

∣∣ = !(! − 1), (3.5)

the number of nonsplit Cartans, otherwise.

4 Proof of Theorem 1.3

Similarly to the proof of [4, Theorem 1], the proof of Theorem 1.3 is an application of

Gallagher’s 2-dimensional large sieve [5, Lemma A], which we recall below.

Lemma 4.1 (Gallagher [5]). Let A be a subset of Z2, and P a set of rational primes. For

each prime p ∈ P, let Ω(p) be a subset of (Z/pZ)2 with ω(p) elements. For x > 0, α =

(α1, α2) ∈ A, set

P(x) :=
∑

p∈P
p≤x

ω(p)
p2

,

P(α, x) := #
{
p ≤ x : p ∈ P, α(mod p) ∈ Ω(p)

}
.

(4.1)

Then for any z ≥ x2,

∑

α∈A
|α|≤z

[
P(α, x) − P(x)

]2 + z2P(x), (4.2)

where |α| ≤ z means that max{α1, α2} ≤ z. !
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Let ! ≥ 17 be a fixed rational prime, and let δ, τ ∈ Z/!Z be fixed residue classes

with δ (≡ 0(mod !). We keep the notation introduced in the statement of Theorem 1.3. Our

first aim is to find an upper estimate for the cardinality of

E!,δ,τ(T) :=
{
t0 ∈ F(T) : πt0(x, !, δ, τ) = 0 ∀x > 0

}
, (4.3)

where

πt0(x, !, δ, τ) := #
{
p ≤ x : p " ! · Nt0 , p ≡ δ(mod !), ap

(
Et0

)
≡ τ(mod !)

}
(4.4)

and where Nt0 is the conductor of Et0/Q. We apply Lemma 4.1 to

A :=

{
(m,n) ∈ Z2 : n (= 0, (m,n) = 1,

m

n
(∈ S

}
,

P :=
{
p : p (= !, p ≡ δ(mod !)

}
,

Ω(p) :=
{
(m,n) ∈ A : (n, p) = 1, p " Nm/n, ap

(
Em/n

)
≡ τ(mod !)

}
,

z := T, x :=
√

T.

(4.5)

We obtain

P
(√

T
)2∣∣E!,δ,τ(T)

∣∣ =
∑

(m,n)∈A
max{|m|,|n|}≤T

(m/n)∈E!,δ,τ(T )

[
πm/n

(√
T ; !, δ, τ

)
− P

(√
T

)]2

≤
∑

(m,n)∈A
max{|m|,|n|}≤T

[
πm/n

(√
T ; !, δ, τ

)
− P

(√
T

)]2

+ T2 · P
(√

T
)
,

(4.6)

which implies that

∣∣E!,δ,τ(T)
∣∣ + T2

P
(√

T
) . (4.7)

Now we need to estimate P(
√

T ); here is where the crucial difference lies between our

proof and the proof of the two-parameter average obtained in [4]. Since ! ≥ 17, we can
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apply Theorem 1.2 and obtain

P
(√

T
)

=
∑

p≤
√

T
p '=!

p≡δ(mod !)

1

p2

[
1

!
p(p − 1) + OA,B

(
!p3/2

)]

=
1

!
π
(√

T ; !, δ
)

+ OA,B

(
T1/4

log T

)
,

(4.8)

where, for x > 0,

π(x; !, δ) := #
{
p ≤ x : p ≡ δ(mod !)

}
. (4.9)

We recall that by the Siegel-Walfisz theorem, if !+(log x)B for some B>0, then π(x; !, δ)2
x/! log x. Thus in order to obtain an upper bound for #E!,δ,τ(T) it suffices that we verify

that the hypothesis of the Siegel-Walfisz theorem holds for our particular !.

Let us note that E!,δ,τ(T) is a subset of rational numbers t0 ∈ F(T) such that !

is an exceptional prime for Et0/Q (in the sense defined in Section 1). By [12], there exist

positive absolute constants c1, γ1 such that

! ≤ c1

(
log H

(
Et0

))γ1 (4.10)

for any t0 ∈ E!,δ,τ(T), where H(Et0) is the naive height of Et0/Q. Consequently, there ex-

ists a positive constant c2(A,B), depending on the polynomials A,B, such that

! ≤ c2(A,B)(log T)γ1 . (4.11)

Thus the hypothesis of Siegel-Walfisz is satisfied, and we get the lower bound

P
(√

T
)
2A,B

√
T

(log T)γ2
(4.12)

for some absolute constant γ2 > 0. By plugging this estimate into (4.7) and by invoking

once again (4.11), we obtain

∣∣E!,δ,τ(T)
∣∣ +A,B T3/2(log T)γ3 (4.13)

for some absolute constant γ3 > 0.
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Combining all these “!, δ, τ-estimates” leads to

∣∣E(T)
∣∣ ≤

∑

!≥17

∑

δ,τ∈Z/!Z
δ'≡0(mod !)

∣∣E!,δ,τ(T)
∣∣ +A,B T3/2(log T)γ4 (4.14)

for some absolute constant γ4 > 0, where, again, we made use of (4.11). It is now clear

that

lim
T→∞

∣∣E(T)
∣∣

∣∣F(T)
∣∣ = 0, (4.15)

and so the proof of Theorem 1.3 is complete.

5 Proof of Theorem 1.4

A well-known conjecture formulated by Lang and Trotter in 1976 [10] predicts that for

an elliptic curve E/Q, of conductor NE, and for an integer τ ∈ Z, there exists a positive

constant c(E, τ), depending on E and τ, such that

Pτ
E(x) := #

{
p ≤ x : p " NE, ap(E) = τ

}
∼ c(E, τ)

√
x

log x
, (5.1)

provided that E is without complex multiplication, or is with complex multiplication but

τ (= 0. Here, ap(E) := p + 1 − |E(Fp)|.
From [15, 16, 19] we know nontrivial upper bounds for Pτ

E(x) under the assump-

tion of a generalized Riemann hypothesis (GRH). More specifically, the current best

bound is Pτ
E(x) +E (x4/5/ log x), obtained under GRH in [16]. It is also known that the

conjecture is true on average over two-parameter families of elliptic curves [3].

A straightforward application of Theorem 1.2 leads to an upper bound for the

one-parameter average (1/|F(T)|)
∑

t0∈F(T ) Pτ
t0

(x), as follows.

Let ! ≥ 17 be an arbitrary rational prime to be chosen optimally later. Clearly we

have
∑

t0∈F(T )

Pτ
t0

(x) ≤
∑

t0∈F(T )

#
{
p ≤ x : p " Nt, ap

(
Et0

)
≡ τ(mod !)

}

=
∑

p≤x

∑

t0∈F(T )
p!Nt0

ap(Et0
)≡τ(mod !)

1. (5.2)

By Theorem 1.2, the most inner sum is

+
(

T2

p2
+ 1

)(
p2

!
+ !p3/2

)
. (5.3)
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Thus

∑

t0∈F(T )

Pτ
t0

(x) +A,B

∑

p≤x

(
T2

!
+

T2!

p1/2
+

p2

!
+ !p3/2

)

+ T2x

! log x
+

T2!x1/2

log x
+

x3

! log x
+
!x5/2

log x
.

(5.4)

We choose the prime ! so that ! , x1/4. Since the parameter T is such that T , x, (5.4)

becomes

1

#F(T)

∑

t0∈F(T )

Pτ
t0

(x) + x3/4

log x
, (5.5)

which completes the proof.

6 Conclusions

It is natural to ask whether the constant c(K) given in Theorem 1.1 depends at most on

the so-called gonality of K. Recall that the gonality of K is defined to be the degree of

the smallest nonconstant map C → P1, an analogue of the degree of a number field over

Q. For example, if we consider an infinite sequence of hyperelliptic curves of strictly in-

creasing genus, then Theorem 1.1 will fail to yield a bound which works for all curves in

the sequence. On the other hand, a bound in terms of the gonality of every curve of the

sequence—two—would suffice.

In [1], it is shown that the gonality of (X(!)/G)/C (we keep the notation intro-

duced in Section 2) is asymptotic to a constant times the genus of X(!)/G; however,

Abramovich’s proof does not generalize to char p. We note that for any nonconstant map

of curves C1 → C2, the gonality of C1 is at least the gonality of C2. The analogous fact,

that genus(C1) ≥ genus(C2), is all we used in the first part of our proof of Theorem 1.1. In

particular, the problem reduces to asking whether the gonality of X(!)/G tends to infinity

as G ! PSL2(Z/!/Z) varies over the maximal subgroups and ! tends to infinity.

As pointed out in the introduction regarding Theorem 1.3, it is of interest to esti-

mate the size of
⋃

!≥2 E!(T), and not only the size of the union over primes ! ≥ 17. For ex-

ample, in [4], the sieve argument together with a result of Deuring in place of Theorem 1.2

imposes ! ≥ 5. The remaining estimates for the primes ! = 2, 3 are based on lattice point

arguments. Moreover, in [6], estimates for each individual ! ≥ 2 are given for a two-

parameter family of elliptic curves. Grant’s arguments, however, do not seem to work
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for one-parameter families of elliptic curves. It is reasonable to expect that, for small

primes, a different type of sieve arguments should actually work (this is already clear

for ! = 2), and we will address this problem in a different paper.

It is also natural to ask whether Theorem 1.3 holds for a one-parameter family of

elliptic curves defined over a fixed number field that is not necessarily Q, and whether

we could take A(t), B(t) to be fixed elements of the function field of any given curve. To

answer the first question, we would need to work out an n-dimensional large sieve for

number fields. To answer the second question, we would need to find an optimal way of

ordering the parameters t. We plan to undertake these additional questions in a future

project.
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