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1. Introduction. Let f be a weight 2 normalized newform on the con-
gruence subgroup Γ0(N) with integral Fourier coefficients. There are two
important numerical invariants attached to f : its congruence number and
its modular degree.
By definition, the congruence number of f is the largest integer Df such

that there exists a weight 2 cusp form on Γ0(N), with integral coefficients,
which is orthogonal to f with respect to the Petersson inner product and
is congruent to f modulo Df . The modular degree of f is the degree deg φf
of the minimal parametrization φf : X0(N)→ E of the strong Weil elliptic
curve E/Q associated to f via the Shimura construction. Here X0(N)/Q
denotes the modular curve defined by Γ0(N).
It turns out that the two quantities Df and degφf are closely related.

On the one hand we have:

Theorem 1.1. In the above setting , deg φf |Df .

This theorem appears already in [Za, p. 381] (in the case that N is a
prime) and also in [AU, p. 278], but the existing proofs are not complete,
as we will point out in more detail in the following section. The purpose of
our paper is to give a detailed and complete proof of this result.
In the opposite direction, it has been announced by Mazur and Ribet

(cf. [Mur]) that the only primes dividing Df/degφf are prime divisors of N ;
their proof has not yet been published. Incidentally, the two invariants need
not be equal, as has been shown by Agashe and Stein [AS].
The quantities degφf and Df are closely linked to several deep conjec-

tures in number theory. For example, in [Fr1], Frey formulated the degree
conjecture which asserts that degφf = O(N2+ε) for any ε > 0. A striking
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result due to Frey and Mai-Murty is that the degree conjecture is equivalent
to the famous ABC conjecture; cf. [Fr2, p. 544] and [Mur, p. 180].
On the other hand, the prime divisors of Df , called the congruence

primes of f , have been studied extensively by Doi, Hida, Mazur, Ribet,
and others; cf. e.g. [Ri2] and the references therein. The question of bound-
ing the congruence primes of f is partially related to a question raised by
Mazur, which is discussed in [Mur, p. 181]. This, in turn, is related to an-
other conjecture of Frey (Conjecture 5 of [Fr2]), which is equivalent to the
Asymptotic Fermat Conjecture; cf. [Fr2, p. 547].

Notation. In addition to the above notation, let S2(Γ0(N)) denote
the space of cusp forms of weight 2 on Γ0(N). Moreover, if R ⊂ C is a
subring, then SR denotes the submodule of S2(Γ0(N)) consisting of the
forms g(z) =

∑
n≥1 an(g)e

2πinz whose Fourier coefficients an(g) lie in R. As
in [DDT], we let TR ⊂ EndR(SR) denote the R-Hecke algebra. Recall that
TR acts on the right on SR; this action is written as g|t for g ∈ SR and
t ∈ TR.
For two abelian varieties A,B defined over Q, let Hom(A,B) =

HomQ(A,B) denote the group of homomorphisms defined over Q and let
Hom0(A,B) := Hom(A,B) ⊗Z Q. Note that Hom0(A,B) is a finite-dimen-
sional Q-vector space which contains Hom(A,B) as a lattice.
As usual, the dual abelian variety of A is denoted by Â. Recall that for

each α ∈ Hom(A,B) we have a dual map α̂ : B̂ → Â between the dual
abelian varieties and that the assignment α %→ α̂ extends to an isomorphism
Hom0(A,B) & Hom0(B̂, Â).
If L ⊂ V is a lattice in a Q-vector space V , then the denominator denα =

denL α of α ∈ V with respect to L is the smallest positive integer d such
that dα ∈ L. (Thus, if n is an integer such that nα ∈ L, then denα |n.) In
particular, if α ∈ Hom0(A,B), then den(α) denotes the denominator of α
with respect to the lattice Hom(A,B).

2. Proof of Theorem 1.1

2.1. The idea of proof. The basic idea of the proof of Theorem 1.1, due to
Hida, Ribet and others (cf. [Za, p. 381]) is to construct an idempotent e of the
ring End0(J0(N)), where J0(N) denotes the Jacobian of X0(N), satisfying
the following three properties: (i) the denominator of e in EndQ(J0(N)) is
deg φ; (ii) e ∈ TQ; (iii) the denominator of e with respect to TZ divides Df .
Since TQ ⊆ EndQ(J0(N)), the theorem follows.
A proof of Theorem 1.1 based on the above idea appears first in [Za,

pp. 381–382], but only for the case N a prime. Since in this case, by strong
results of Mazur, TQ is isomorphic to EndQ(J0(N)), one actually has degφ
= Df . Zagier’s parenthetic generalization of the result to arbitrary N is
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stated incorrectly and the suggested proofs of (ii) and (iii) have gaps. A more
detailed proof of Theorem 1.1 appears in [AU, pp. 278–279]. This proof does
not provide an explanation for why property (ii) holds (cf. Remark 2.2) and,
also, the proof of (iii) has some gaps. In this exposition we shall unravel the
details behind these properties and thus present complete proofs.

2.2. Review of the Shimura construction. Let j : X0(N)→ J0(N) denote
the injection of X0(N) into J0(N) induced by the map P %→ cl(P − (∞)),
where (∞) ∈ X0(N)(Q) is the rational point corresponding to the cusp
at infinity. Then, if ΩX = H0(X,Ω1X) denotes the Q-vector space of holo-
morphic differentials on a variety X/Q, the pullback j∗ induces a canonical
identification ΩJ0(N) & ΩX0(N) & SQ.
Since f =

∑
n≥1 an(f)q

n ∈ SZ is a normalized newform and hence a TQ-
eigenform, there exists by the Shimura construction an (essentially unique)
abelian quotient p = pf : J0(N) → Af = E (defined over Q) such that
Ker(p) is connected and such that p∗ΩE = W := Qf ⊂ ΩJ0(N) (via the
above identifications); cf. [Sh2, Theorem 1] and/or [Ka2, Example 5.2]. In
particular, dimE = dimQW = 1, i.e. E is an elliptic curve over Q. Moreover,
there is an injective ring homomorphism τ = τf : Kf := Q({an(f)}n≥1) ↪→
End0(E) := EndQ(E)⊗Q such that

τ(χf (t)) ◦ p = p ◦ t for all t ∈ TQ ⊂ End0(J0(N)),(1)

where χf : TQ → Kf = Q is the character defined by f , i.e. f |t = χf (t)f for
all t ∈ TQ.

2.3. Construction of the idempotent e. Let φ = φf := pf ◦ j : X0(N)
→ E, which is the associated (minimal) modular parametrization of the
elliptic curve E. By functoriality, φ induces a homomorphism φ∗ : JE →
J0(N), where JE denotes the Jacobian of E. (Note that the polarization on
E induces an isomorphism ) : E ∼→ JE .) In addition, by duality we have a
homomorphism φ∗ : J0(N)→ JE , given by the formula

φ∗ = θ−1E ◦ (φ
∗)∧ ◦ θ,(2)

where θ : J0(N)→ Ĵ0(N) and θE : JE → ĴE are the canonical polarizations
on J0(N) and on JE , respectively, and (φ∗)∧ : Ĵ0(N)→ ĴE denotes the dual
map of φ∗. Note that φ∗ is also the “dual” of φ∗ in the sense that we have

φ∗ = θ−1 ◦ (φ∗)∧ ◦ θE ;(3)

cf. e.g. [Ka1, p. 46]. By the autoduality property of the Jacobian, the map
φ∗ : J0(N)→ JE is related to p : J0(N)→ E via the formula

) ◦ p = φ∗.(4)
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In particular, the kernel Ker(φ∗) = Ker(p) of φ∗ is connected and hence
φ∗ is injective; cf. e.g. [Ka1, pp. 47–48]. Furthermore, we have

φ∗ ◦ φ∗ = deg(φ) idJE ;(5)

cf. e.g. [Ka2, p. 46]. From this it is immediate that the element

e = eφ :=
1
degφ

φ∗ ◦ φ∗ ∈ End0(J0(N))

is an idempotent, i.e. satisfies the equation e2 = e. For later purposes it
is useful to note that e is symmetric with respect to the Rosati involution
f %→ f ′ := θ−1 ◦ f̂ ◦ θ of End0(J0(N)) (cf. [Mu, p. 189]); indeed, by (2) and
(3) we have

e′ =
1
degφ

θ−1 ◦ (φ∗ ◦ φ∗)∧ ◦ θ =
1
deg φ

θ−1 ◦ (φ∗)∧ ◦ (φ∗)∧ ◦ θ = e.

In addition, we observe that its trace on the space ΩJ0(N) is tr(e
∗|ΩJ0(N)) =

dimφ∗ΩJE = 1.

2.4. Calculation of the denominator of e in End(J0(N)). We shall use
the following simple facts about denominators of elements in Hom0(A,B),
where A and B are abelian varieties.

Lemma 2.1. If α ∈ Hom0(A,B) and if β : B → C, γ : C → A are
homomorphisms of abelian varieties, then

den(α̂) = den(α);(6)
den(β ◦ α) = den(α) if β is injective;(7)
den(α ◦ γ) = den(α) if γ̂ is injective.(8)

Proof. Let n := den(α). Then nα ∈ Hom(A,B) and hence nα̂ = (nα)∧ ∈
Hom(B̂, Â). Thus den(α̂) divides n = den(α), and hence also den(α̂) divides
den((α̂)∧) = den(α) (because we have a functorial identification κA : A

∼→
(Â)∧). This proves (6).
Moreover, since n(β ◦ α) = β ◦ (nα) ∈ Hom(A,C), we see that m :=

den(β◦α) divides n = den(α). Set α1 := nα ∈ Hom(A,B) and α2 := m(β◦α)
∈ Hom(A,C). Now since (n/m)α2 = β ◦ α1, we see that Ker((n/m) idA) ≤
Ker(β ◦ α1) = Ker(α1), the latter because β is injective. Thus α1 = α3 ◦
(n/m) idA for some α3 ∈ Hom(A,B), and so mα = (m/n)α1 = α3. This
means that n = den(α) |m, and so m = n, which verifies (7).
Finally, the last assertion follows immediately from the first two because

den(α ◦γ) = den(γ̂ ◦ α̂) = den(α̂) = den(α) by (6), (7) and (6), respectively.

From the above lemma it follows easily that

den(eφ) = deg(φ).(9)
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Indeed, since φ∗ is injective, we deduce by (7) that

den(eφ) = den
(
1
deg φ

φ∗

)
.

Moreover, since (φ∗)∧ is also injective by (3), it follows from (8) that

den
(
1
deg φ

φ∗

)
= den

(
1
deg φ

idJE

)
= degφ,

and so (9) follows.

2.5. Proof that e ∈ TQ. To prove that e ∈ TQ, we shall use Atkin–Lehner
theory to construct another idempotent ε ∈ TQ and then show that in fact
ε = e.

Remark 2.2. In [AU], the authors deduce this fact (implicitly) from
their assertion that an isogeny J0(N) ∼ E×A (where A = Ker(φ∗)) induces
a splitting

End0(J0(N)) & End0(E)× End0(A).(10)

This statement, which is asserted without proof on p. 278, is in fact false
in general because A may have a factor isogenous to E. For example, this
always happens in the case that f ∈ SZ is a TQ-eigenform which is not a
newform. (Note that for this case the Shimura construction and the asser-
tions of §§2.2–2.4 apply as well.) If, however, we assume that f is a newform
(as we did throughout), then we do have such splitting (10), but the proof
of this fact requires the deep results of Ribet [Ri1, Corollary 4.2] and more.
The following proof shows that such deep results are not necessary here.

Since f ∈ SQ is a newform, we have (by Atkin–Lehner theory) a TQ-
module decomposition SQ = W ⊕ W ′, where (as before) W = Qf . Let
eW ∈ EndTQ(SQ) denote the projector onto W ; in particular, Im(eW ) = W
and Ker(eW ) =W ′. Now since SQ is a free TQ-module of rank 1 (cf. [DDT,
p. 36]), it follows that EndTQ(SQ) = EndTQ(TQ) = TQ and hence there is
a unique ε ∈ TQ such that g|ε = eW (g) for all g ∈ SQ. Note that ε is
necessarily an idempotent and that TQε = AnnTQ(W ′); cf. Bourbaki [Bo,
Prop. 1(d) of §VIII.1, p. 8]. Thus,

εt = χf (t)ε,(11)

for if g = cf + w′ ∈ SQ with c ∈ Q, w′ ∈ W ′, then g|εt = cf |εt = cf |t =
χf (t)cf = χf (t)cf |ε = χf (t)g|ε, which is (11). In particular, we see that
χf (ε) = 1 (because ε = ε2 = χf (ε)ε).
Recall that we can view TQ as a subring of End0(J0(N)). Now TQ is (in

general) not preserved under the Rosati involution, i.e. T′Q /⊂ TQ. However,
we shall see presently that ε′ ∈ TQ and that in fact ε′ = ε. As a first step
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towards this we show

f |t′ = χf (t)f for all t ∈ TQ.(12)

To see this, recall that the newform f is also a T′Q-eigenform (cf. [Mi, p. 165])
and so (since TQ is commutative) there is a character χ′f : TQ → Q such
that f |t′ = χ′f (t)f for all t ∈ TQ. Thus, since t′ (viewed as an endomorphism
of SQ) is the adjoint of t with respect to the Petersson inner product 〈·, ·〉
on SQ (cf. Shimura [Sh1, p. 76 and p. 171]), we have

χ′f (t)〈f, f〉 = 〈f |t′, f〉 = 〈f, f |t〉 = χf (t)〈f, f〉,

where χf (t) denotes the complex conjugate of χf (t). This shows that χ′(f) =
χf (t) = χf (t), which proves (12).
From (12) it follows that

εt′ = χf (t)ε, tε′ = χf (t)ε′ for all t ∈ TQ.(13)

Indeed, if g = cf + w′ ∈ SQ with c ∈ Q, w′ ∈ W ′, then by (12) we have
g|εt′ = cf |εt′ = cf |t′ = χf (t)cf = χf (t)cf |ε = χf (t)g|ε, which proves the
first equation of (13). The second equation follows from the first by applying
the Rosati involution to both sides.
From the two equations (13) it follows immediately that ε is symmetric.

Indeed, by taking t = ε in (13) we obtain εε′ = ε and εε′ = ε′ (recall that
χf (ε) = 1) and so ε = ε′ is symmetric.
We now relate ε to the idempotent e constructed in §2.3. For this, we

first observe that by taking t = ε in (1) we obtain p ◦ ε = idE ◦ p because
χf (ε) = 1 (and τ is a ring homomorphism). So by (4) we have

φ∗ ◦ ε = φ∗ and hence e ◦ ε = e.

Thus, since ε and e are both symmetric, we also have e = e′ = (eε)′ = ε′e′ =
εe, which means that ε and e commute. This in turn implies that ε − e is
an idempotent, for (ε− e)2 = e2 + ε2 − 2eε = e+ ε− 2e = ε− e. Thus, its
trace is tr(ε − e|SQ) = dim Im(ε − e). On the other hand, tr(ε − e|SQ) =
tr(ε|SQ) − tr(e|SQ) = dim Im(eW ) − 1 = 0, and so Im(ε − e) = 0, i.e.
e = ε ∈ TQ.

2.6. Proof that the denominator of e in TZ divides Df . Let Lf := Zf ⊕
(SZ ∩ 〈f〉⊥). Then it is not difficult to see that the congruence number Df
(as defined in the introduction) is equal to the exponent of the (finite) group
SZ/Lf ; cf. e.g. [Za, p. 381].
Moreover, put T := eTZ ⊕ (1− e)TZ and T := T /TZ. Note that T is a

cyclic group of order d, where d is the denominator of e in TZ. Indeed, by
using the surjectivity of χf : TZ → Z and (11), we see that T = eTZ ⊕ (1−
e)TZ = e+ TZ, and hence T = (eZ+ TZ)/TZ & Z/dZ.
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Next, we shall relate T to SQ/Lf and hence find that the order of T
divides Df . For this, consider the exact sequence of Z-modules

0→ TZ → T → T → 0,
which induces the exact sequence

0→ HomZ(T ,Z)→ HomZ(T ,Z)
r−→ HomZ(TZ,Z)

→ Ext1Z(T ,Z)→ Ext1Z(T ,Z)→ Ext1Z(TZ,Z)→ . . . ,
where r denotes the restriction map defined by r(f) = f|TZ . Since T is a finite
cyclic group, we have HomZ(T ,Z) = 0 and Ext1Z(T ,Z) & T & Z/dZ. Also,
since T is a free (hence projective) Z-module, Ext1Z(T ,Z) = 0. Therefore we
are left with the exact sequence

0→ HomZ(T ,Z)
r−→ HomZ(TZ,Z)→ Z/dZ→ 0,

which implies thatH := HomZ(TZ,Z)/r(HomZ(T ,Z)) is a finite cyclic group
of order d.
Next we show thatH is isomorphic to a quotient of SZ/Lf and that hence

d |Df . To see this, recall that we have the perfect pairing aC : SC×TC → C
given by aC(g, t) = a1(g|t), where a1(g|t) denotes the first Fourier coefficient
of g|t, and that this pairing induces the isomorphism (cf. [Ri2, Th. 2.2])

aZ : SZ
∼−→ HomZ(TZ,Z).

To verify the above assertion, it is thus enough to construct a homomorphism

A : Lf = Zf ⊕ (SZ ∩ 〈f〉⊥)→ HomZ(T ,Z)
with the property that r ◦A = (aZ)|Lf , for then it follows immediately that

H = HomZ(TZ,Z)/r(HomZ(T ,Z)) & Z/dZ
is a quotient of HomZ(TZ,Z)/r(Im(A)) & SZ/Lf .
To define A, let a ∈ Z, g ∈ SZ ∩ 〈f〉⊥, t1, t2 ∈ TZ and put

A(af + g)(et1 + (1− e)t2) := a1(af |t1 + g|t2).(14)

We shall presently see that this is a well defined (injective) group homo-
morphism (1). Note that by taking t1 = t2 in (14), it then follows that
r ◦A = (aZ)|Lf , as desired.
To see that A is well defined, write SQ = sTQ (recall that SQ is a free

TQ-module of rank 1) and let g ∈ SZ ∩ 〈f〉⊥. Then there exist tf , tg ∈ TQ
such that

f = χf (tf )s|e,(15)
g = s|(1− e)tg.(16)

(1) One can show that the homomorphism A is in fact an isomorphism. This implies
that SZ/Lf ! H ! Z/dZ is a cyclic group of order d.
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Indeed, since f ∈ SQ, we can write f = s|tf for some tf ∈ TQ, and then
f = χf (e)f = f |e = s|tfe = s|etf = χf (tf )s|e because χf (e) = 1 (cf. (11)).
This proves (15). Moreover, by writing g = s|tg for some tg ∈ TQ and then
using (15) in the form

s|e = 1
χf (tf )

f,

we obtain

g = s|etg + s(1− e)tg =
χf (tg)
χf (tf )

f + s|(1− e)tg.

But g ∈ 〈f〉⊥, hence

0 = 〈g, f〉 =
χf (tg)
χf (tf )

〈f, f〉+ 〈s|(1− e)tg,χf (tf )s|e〉 =
χf (tg)
χf (tf )

〈f, f〉,

where we have also used the fact that e is a symmetric idempotent. This
implies that χf (tg) = 0, which, in turn, proves (16).
Now we can check easily that A is well defined. Indeed, suppose that

t1, t′1, t2, t
′
2 ∈ TZ are such that et1 + (1 − e)t2 = et′1 + (1 − e)t′2. Then

et1 = et′1, (1 − e)t2 = (1 − e)t′2 and hence by using (15), (16) we obtain
f |t1=χf (tf )s|et1=χf (tf )s|et′1=f |t′1 and g|t2= s|tg(1− e)t2= s|tg(1− e)t′2
= g|t′2, and so A is well defined.
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