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Abstract. Let E be an elliptic curve defined over Q and of conductor N . For a prime p ! N we
denote by E the reduction of E modulo p. We obtain an asymptotic formula for the number of
primes p ≤ x for which E(Fp) is cyclic, assuming a certain generalized Riemann hypothesis.
The error terms that we get are substantial improvements of earlier work of J-P. Serre and M.
Ram Murty. We also consider the problem of finding the size of the smallest prime p = pE for
which the group E(Fp) is cyclic and we show that, under the generalized Riemann hypothesis,
pE = O

(
(log N)4+ε) if E is without complex multiplication, and pE = O

(
(log N)2+ε) if E

is with complex multiplication, for any 0 < ε < 1.

Mathematics Subject Classification (2000): 11G05, 11N36, 11R45

1. Introduction

Let E be an elliptic curve defined over Q and of conductor N . For a prime p ! N

let E be the reduction of E modulo p. This is again an elliptic curve, defined over
the finite field Fp with p elements. Many natural and interesting questions arise
regarding the group E(Fp) of Fp-rational points of E. The most basic ones are
to estimate the size and to find the structure of the group E(Fp). Other questions
arise as elliptic curve analogues of classical problems and conjectures in number
theory. We will discuss a few such examples in what follows.

First we recall that we have information about the size of E(Fp). Indeed, if
we write

#E(Fp) = p + 1 − ap

A. C. Cojocaru"

Pinceton University, Mathematics Department, 810 Fine Hall, Washington Road, Princeton, NJ
08540, USA (e-mail: cojocaru@math.princeton.edu)

M. R. Murty""

Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, K7L 3N6
Canada (e-mail: murty@mast.queensu.ca)
" Research supported in part by an Ontario Graduate Scholarship.
"" Research supported in part by an NSERC grant.



602 A. C. Cojocaru, M. R. Murty

for some integer ap, where #S denotes the cardinality of a set S, then the famous
Riemann Hypothesis for E, proven by Hasse in 1933, asserts that

|ap| ≤ 2
√

p.

We also have information about the structure of E(Fp). Let Fp denote an alge-
braic closure of Fp and for a positive integer k let E(Fp)[k] and E(Fp)[k] denote
the groups of Fp- and Fp-rational points of E, respectively, which are annihilated
by k. We see that E(Fp) is a subgroup of E(Fp)[k] for some positive integer k such
that #E(Fp)|k, and we recall from classical theory that E(Fp)[k] is isomorphic
to a subgroup of Z/kZ × Z/kZ (see [Si1, p.89]). We deduce that E(Fp) can be
written as the product of two finite cyclic groups Z/dpZ × Z/dpepZ for uniquely
determined positive integers dp, ep, depending on p.

There is some interest in determining when the group E(Fp) is actually cyclic.
In 1975, I. Borosh, C.J. Moreno and H. Porta calculated the structure of E(Fp)

for various primes p and various elliptic curves E defined over Q. They conjec-
tured that for ‘many’ elliptic curves E defined over Q, there are infinitely many
primes p for which E(Fp) is cyclic (see [BoMoPo, pp. 963–964]). As we will
see (statement (5) below), this prediction is indeed true. In 1976, S. Lang and H.
Trotter formulated an elliptic curve analogue of Artin’s conjecture on primitive
roots (see [LaTr]): let E be an elliptic curve defined over Q, of conductor N and
having arithmetic rank ≥ 1; let a ∈ E(Q) be a fixed rational point on E of infinite
order; then the density of the primes p ! N for which E(Fp) = 〈a(mod p)〉 exists.
Clearly, showing that the density of the primes p ! N for which E(Fp) is cyclic
exists is a natural subproblem of Lang and Trotter’s conjecture.

With the increasing development of elliptic curve public-key cryptography
initiated by N. Koblitz and V. Miller in the late 1980’s, the problem of determin-
ing how often the group E(Fp) is cyclic acquired yet a new significance. More
precisely, certain public-key cryptosystems based on the presumed intractability
of the discrete logarithm problem can be implemented using the group of points
of an elliptic curve E defined over a finite field (see [Ko1]). Then one wants the
cyclic group generated by a certain point a on E to have order divisible by a large
prime. One way to accomplish this is to choose the elliptic curve E and the finite
field so that the group of points of E has prime order; then the desired condition
holds for any nontrivial point a on E. To find such an elliptic curve, we can start
by fixing an elliptic curve E defined over Q (possibly of rank at least 1), then
we reduce E modulo primes p of good reduction and choose a prime p such
that #E(Fp) is prime, or such that the group E(Fp) is cyclic and generated by
a(mod p) for some fixed global point a ∈ E(Q) of infinite order (if such a point
exists). We are naturally led to the above 1976 question of Lang and Trotter on
primitive points, or to the 1988 question of Koblitz of determining the proportion
of the primes p for which #E(Fp) is prime (see [Ko2]). The cyclicity of E(Fp)

is a common subproblem of both these questions.
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The precise goal in this paper is to determine an explicit asymptotic formula
for

f (x, Q) := #
{
p ≤ x : p ! N, E(Fp) cyclic

}
(1)

and to obtain upper bounds in terms of the conductor N for the smallest prime
p = pE for which E(Fp) is cyclic. This latter problem can be viewed as an
elliptic curve analogue of Linnik’s question about the size of the least prime in an
arithmetic progression (see [Li1] and [Li2]).

In 1976, J-P. Serre adapted Hooley’s conditional proof of Artin’s conjecture
[Ho, chapter 3] to obtain an asymptotic formula for the number of primes p ≤ x

for which the group of points modulo p of an elliptic curve is cyclic (see [Se3]
or [Mu1, pp. 159–161]). Before stating Serre’s result, let us introduce some more
notation. For any positive integer k let E[k] denote the group of points of E which
are annihilated by k (called the k-division group of E) and let Q(E[k]) be the field
obtained by adjoining to Q the x- and y-coordinates of the points of E[k] (called
the k-division field of E). Serre showed that if we assume the generalized Riemann
hypothesis (denoted GRH) for the Dedekind zeta functions of the division fields
of E, then, as x → ∞,

f (x, Q) = fE li x + error(E, x), (2)

where

fE =
∑

k≥1

µ(k)

[Q(E[k]) : Q]
(3)

with µ(·) denoting the Möbius function and li x =
∫ x

2
dt

log t
denoting the logarith-

mic integral, and where

error(E, x) = o
(

x

log x

)
. (4)

It is not difficult to see that fE is finite and that it is positive if and only if E

has an irrational 2-division point. For clarity and completeness, we will explain
this in detail in Section 6 of the paper.

In 1979 [Mu1, pp. 161–167], R. Murty eliminated the use of GRH in Serre’s
argument for elliptic curves with complex multiplication (denoted CM). His proof
uses class field theoretical properties of CM elliptic curves and the large sieve for
number fields in the form of a number field version of the Bombieri-Vinogradov
Theorem. In 1987 [Mu2], R. Murty also demonstrated unconditionally the exis-
tence of infinitely many primes p for which E(Fp) is cyclic for certain elliptic
curves E without complex multiplication (denoted non-CM). More precisely, he
showed that for elliptic curves Ea : y2 =

(
x2 + 1

)
(x + a) with a ∈ Q and such

that its j -invariant jEa satisfies jEa /∈ Z, the group of points of Ea modulo p is
cyclic for any supersingular prime p of Ea . By 1987 results of N. Elkies, there
are infinitely many supersingular primes, hence there are infinitely many primes
p for which Ea(Fp) is cyclic. In 1990 [GuMu2], R. Gupta and R. Murty showed
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unconditionally that for any elliptic curve E which has an irrational 2-division
point, we have

f (x, Q) +E

x

(log x)2
. (5)

The implied +E-constant depends on E. In 2000 [Co1], A.C. Cojocaru showed
that if E is a non-CM elliptic curve, then Serre’s result holds under the assumption
of a quasi-GRH, namely a zero-free region of Re s > 3/4 for the Dedekind zeta
functions of the division fields of E, and with

error(E, x) = ON

(
x log log x

(log x)2

)
. (6)

In 2001 [Co2], she also gave a new simpler unconditional proof for formula (2)
in the case of a CM elliptic curve, and obtained

error(E, x) = ON

(
x

(log x)(log log log x)

)
= O

(
x

(log x)(log log log x)
· log log x

log log x

N2

)

. (7)

The implied ON -constants above depend on N , while the O-constant is absolute.
In this paper we will obtain asymptotic formulae for f (x, Q) with error terms

of type ON

(
xδ

)
for some 0 < δ < 1. It will be the first time such error terms are

obtained in such questions. Moreover, we will obtain an explicit dependence of
the error terms on the conductor N . This feature will allow us to deduce estimates
for the smallest prime p for which E(Fp) is cyclic.

Before stating the principal results of the paper, let us recall that associated
to an elliptic curve E defined over Q one can define a natural representation
φk : Gal(Q(E[k])/Q) −→ GL2(Z/kZ), which is easily seen to be injective. A
famous result of Serre (see [Se2]) asserts that if the curve E is non-CM, then there
exists a finite set of primes SE such that φl is surjective for any prime l /∈ SE .
Moreover, if we set A(E) := 2 · 3 · 5 ·

∏
l∈SE

l, where the product is over primes
l, then φk is surjective for any positive integer k coprime to A(E) (see Appendix
of [Co4]). We will refer to A(E) as Serre’s constant associated to E.

The main results of the paper are as follows.

Theorem 1.1. Let E be a non-CM elliptic curve defined over Q and of conductor
N . Let A(E) be Serre’s constant associated to E. Let x ≥ 9.

1. Assuming GRH for the Dedekind zeta functions of the division fields of E, we
have that

f (x, Q) = fE li x + ON

(
x5/6(log x)2/3) ,

or, more precisely,

f (x, Q) = fE li x+O
(
x5/6(log(Nx))2/3)+O

(
(log log x)(log(Nx))

log x
A(E)3

)
.
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2. Assuming GRH, Artin’s Holomorphy Conjecture (denoted AHC) and a Pair
Correlation Conjecture (denoted PCC) for the L-functions associated to the
irreducible characters of the Galois groups of the division fields of E, we have
that

f (x, Q) = fE li x + ON

(
x7/10(log x)4/5) ,

or, more precisely,

f (x, Q) = fE li x + O
(
x7/10(log(Nx))4/5A(E)

)

+ O
(

(log log x)(log(Nx))6/5

x1/5 log x
A(E)3

)
.

The ON -constants above depend on N , and the O-constants are absolute.

For formulations of AHC and PCC we refer the reader to [Mu5].

Theorem 1.2. Let E be an elliptic curve defined over Q, of conductor N , and
with complex multiplication by the full ring of integers of an imaginary quadratic
field. Let x ≥ 9. Assuming GRH for the Dedekind zeta functions of the division
fields of E, we have that

f (x, Q) = fE li x + O
(
x3/4(log(Nx))1/2) .

The implied O-constant is absolute.

Theorem 1.3. Let E be a non-CM elliptic curve defined over Q, of conductor N

and such that Q(E[2]) ,= Q. Assuming GRH for the Dedekind zeta functions of
the division fields of E, we have that the smallest prime p = pE for which E(Fp)

is cyclic has size
pE = Oε

(
(log N)4+ε) ,

where ε > 0 is any small real number. The implied Oε-constant depends only
on ε.

Theorem 1.4. Let E be an elliptic curve defined over Q, of conductor N , with
complex multiplication by the full ring of integers of an imaginary quadratic field,
and such that Q(E[2]) ,= Q. Assuming GRH for the Dedekind zeta functions of
the division fields of E, we have that the smallest prime p = pE for which E(Fp)

is cyclic has size
pE = Oε

(
(log N)2+ε) ,

where ε > 0 is any small real number. The implied Oε-constant depends only
on ε.

In what follows, p, q, l will denote rational primes, k a positive integer, and x,
y positive real numbers tending to infinity. Given an elliptic curve E defined over
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Q and of conductor N , the prime p will be such that p ! N . Given k, φ(k) will
denote the Euler function of k, that is, the number of positive integers ≤ k and
coprime to k, and ν(k) will denote the number of distinct prime factors of k. We
recall that for functions f, g : D ⊆ C −→ R with g taking positive values, we
write f (x) = O(g(x)), f (x) . g(x), or g(x) + f (x) if there exists a positive
constant M such that |f (x)| ≤ Mg(x) for any x ∈ D. In case f takes positive
values and f (x) . g(x) . f (x), we write f (x) / g(x). If D is infinite and g is
non-zero on D, we write f (x) ∼ g(x) if limx→∞

f (x)
g(x)

= 1, and f (x) = o(g(x))

if limx→∞
f (x)
g(x)

= 0. We also make the following convention about the implicit
., +, / and O-constants: whenever we write .c, +c, /c or Oc for some c, we
indicate that the implicit constant M depends on c; whenever we write ., +, /
or O, we indicate that the implicit constant M is absolute.

2. Outline of the proofs

In order to estimate f (x, Q) we use the following important result.

Lemma 2.1. Let E be an elliptic curve defined over Q, of conductor N , and let p

be a prime with p ! N . If q ,= p, then E(Fp) contains a (q, q)-type subgroup (that
is, a subgroup isomorphic to Z/qZ × Z/qZ) if and only if p splits completely in
Q(E[q]). Consequently, E(Fp) is a cyclic group if and only if p does not split
completely in the q-division field Q(E[q]) of E for any prime q ,= p.

Proof. First we remark that p is an unramified prime of Q(E[q]), since it is
coprime to qN (see Proposition 3.5 below). Then we let

πp : E
(
Fp

)
−→ E

(
Fp

)
, πp(x, y) =

(
xp, yp

)

be the Frobenius endomorphism and we observe that

Ker(πp − 1) = E(Fp). (8)

Now, E(Fp) contains a (q, q)-type subgroup if and only if E(Fp)[q] ⊆ E(Fp),
and, from (8), if and only if E(Fp)[q] ⊆ Ker(πp −1). But from classical algebraic
number theory this is equivalent to p splitting completely in Q(E[q])/Q. This
concludes the proof of the lemma. 12

We also observe that if p ≤ x splits completely in Q(E[k]) for some k, then
k ≤ 2

√
x. Indeed, on the one hand from Lemma 2.1 we get that k2|#E(Fp). On

the other hand, from Hasse’s inequality we know that #E(Fp) ≤
(√

p + 1
)2.

Therefore k ≤
√

x + 1 ≤ 2
√

x.
By using the above and the inclusion-exclusion principle, we can write

f (x, Q) =
∑

k≤2
√

x

µ(k)π1(x, Q(E[k])/Q), (9)
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where for a number field L/Q we use the notation

π1(x, L/Q) := # {p ≤ x : p splits completely in L/Q} .

From (9) we see that explicit formulae for π1(x, Q(E[k])/Q) shall give us
an explicit formula for f (x, Q). As will be recalled in Section 3, an explicit
formula for π1(x, Q(E[k])/Q) is provided by effective versions of the Chebota-
rev Density Theorem. However, the best error term in each of these formulae is
O

(
x1/2 log(kNx)

)
, and it is clear that by summing over k ≤ 2

√
x we obtain some-

thing bigger than the expected main term fE li x ∼ fE
x

log x
. The usual technique

in analytic number theory for overcoming this difficulty is to split the sum (9)
describing f (x, Q) into subsums, some of which are to be handled as suggested
above, the others differently.

In his 1976 treatment of f (x, Q), Serre considered the splitting

f (x, Q) =
∑

k

′
µ(k)π1(x, Q(E[k])/Q) + O




∑

y<q≤2
√

x

π1(x, Q(E[q])/Q)



 ,

where the sum
∑

k

′
is over square-free positive integers k whose prime divisors

are ≤ y, the sum
∑

y<q≤2
√

x

is over rational primes q, and y = y(x) is some real

parameter which is optimally chosen in each case. This approach emulates the one
used by Hooley in his conditional treatment of Artin’s primitive root conjecture
(see chapter 3 of [Ho]). It was also used by the authors for obtaining their earlier
respective results mentioned in Section 1.

A more natural splitting, however, is

f (x, Q) =
∑

k≤y

µ(k)π1(x, Q(E[k])/Q) +
∑

y<k≤2
√

x

µ(k)π1(x, Q(E[k])/Q)

=:
∑

main
+

∑
error

(10)

for some parameter y = y(x), to be chosen later. The first sum will provide the
main term in the asymptotic formula for f (x, Q) and will be estimated using
effective versions of the Chebotarev Density Theorem. The second sum will pro-
vide the error term for f (x, Q) and will be estimated using various sieve methods.
We emphasize that the novelty in our treatment of f (x, Q) consists not only in the
new splitting (10), but also in the new ways of estimating

∑
error. As will be seen,

our approach leads to much better error terms than the ones obtained following
Serre’s (or Hooley’s) approach.

In our estimates we will also be careful in keeping track of the dependence of
the error terms on the conductor N of E. This feature will allow us to determine
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the size of the smallest prime p for which E(Fp) is cyclic, by comparing the main
term with the error term in the formula for f (x, Q).

3. Preliminaries

3.1. The Chebotarev Density Theorem

The Chebotarev Density Theorem is one of the principal tools needed for proving
the main theorems of this paper. We recall it in what follows.

We let L/Q be a finite Galois extension with group G, of degree nL and dis-
criminant dL. The set of conjugacy classes contained in G is denoted by G̃. We
denote by P(L/Q) the set of rational primes p which ramify in L/Q and set

M(L/Q) := (#G)
∏

p∈P(L/Q)

p.

The Chebotarev Density Theorem asserts that, as x → ∞,

π1(x, L/Q) ∼ 1
#G

li x.

In our calculations we need effective versions of this theorem (that is, versions
with explicit error terms). They were first derived by J. Lagarias andA. Odlyzko in
1976 (see [LaOd]), refined by J-P. Serre (see [Se4]), and subsequently improved
by K. Murty, R. Murty and N. Saradha (see [MuMuSa] and [MuMu]).

Theorem 3.1. Assuming GRH for the Dedekind zeta function of L, we have that

π1(x, L/Q) = 1
#G

li x + O
(

x1/2
(

log |dL|
nL

+ log x

))
.

The implied O-constant is absolute.

This version of the effective Chebotarev Density Theorem is slightly more refined
than a statement given in [LaOd] and is due to Serre (see [Se4, p. 133]).

By assuming, in addition to GRH, Artin’s Holomorphy Conjecture (denoted
AHC) and a Pair Correlation Conjecture (denoted PCC), one can improve the
error term in the above asymptotic formula for π1(x, L/Q).

Theorem 3.2. Assuming GRH, AHC and PCC for the Artin L-functions attached
to the irreducible characters of G, we have that

π1(x, L/Q) = 1
#G

li x + O



x1/2

(
#G̃

#G

)1/4

log(M(L/Q)x)



 ,

where G̃ denotes the set of conjugacy classes of G. The implied O-constant is
absolute.

This result is due to K. Murty and R. Murty (see [MuMu]).
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Remark 3.3. If L/Q is an abelian extension, then all the conjugacy classes of
G = Gal(L/Q) are singleton sets; consequently, the quotient #G̃

#G
becomes 1 and

the error terms given in Theorems 3.1 and 3.2 have the same size. Similarly, if
the quotient #G̃

#G
is not ‘very small’, then the error term given in Theorem 3.2 is

not significantly different from the one given in Theorem 3.1. In such a situation
we say that the group G is ‘almost abelian’. The improvement made in Theorem
3.2 is most significant in the case of a non-abelian extension L/Q whose Galois
group G has few conjugacy classes. This will be apparent in our applications of
the Chebotarev Density Theorem in Section 4.

The following result is very helpful in estimating the error terms in the effective
Chebotarev Density Theorem.

Lemma 3.4. Let L/Q be a finite Galois extension of degree nL and discriminant
dL. Using the same notation as before, we have that

log |dL|
nL

≤ log nL +
∑

p∈P(L/Q)

log p.

For a proof of this lemma we refer the reader to [Se4, p. 130].

3.2. Division fields of elliptic curves

In this section we gather some properties of the division fields Q(E[k]) of an
elliptic curve E defined over Q. We write

n(k) = [Q(E[k]) : Q] (11)

for the degree of Q(E[k]) over Q.

Proposition 3.5. Let E be an elliptic curve defined over Q and of conductor N .
Let k be a positive integer.

1. Q(E[k])/Q is a finite Galois extension for which Gal(Q(E[k])/Q) ≤ GL2

(Z/kZ). Consequently,

n(k) ≤ k4
∏

q|k

(
1 − 1

q

) (
1 − 1

q2

)
≤ k4.

2. The ramified primes of Q(E[k])/Q are divisors of kN .
3. The cyclotomic field Q(ζk) is contained in Q(E[k]). Therefore

φ(k)|n(k),

and a rational prime p which splits completely in Q(E[k]) satisfies p ≡
1(mod k).
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Part 1 of this proposition is a direct consequence of the injectivity of the Galois
representation φk : Gal(Q(E[k])/Q) −→ GL2(Z/kZ) associated to E; for parts
2 and 3 we refer the reader to [Si1, p. 179 and p. 98].

Proposition 3.5 gives us lower and upper bounds for n(k). We are interested
in determining even more precise estimates for n(k). As will be recalled below,
the size of n(k) differs drastically according to whether E is a CM or a non-CM
curve.

From the celebrated theorem of Serre on the surjectivity of φk we deduce the
following (see, for example, Appendix of [Co4]).

Proposition 3.6. Let E be a non-CM elliptic curve defined over Q and let A(E)

be Serre’s constant associated to E.

1. For any integer k coprime to A(E) we have that

n(k) = k4
∏

q|k

(
1 − 1

q

) (
1 − 1

q2

)

and that Q(ζk) is the maximal abelian extension of Q which is contained in
Q(E[k]).

2. Let k be a positive integer. We write it uniquely as k = k1k2 with k1 composed
of primes which are divisors of A(E) and k2 composed of primes which are
coprime to A(E). Then

n(k) ≥ φ(k1)n(k2) + φ(k)k3
2 .

Proof. 1. For the first statement of part 1 we refer the reader to [Se1] or [Co4,
Appendix]. Now for k coprime to A(E) let us show that Q(ζk) is the maximal
abelian extension contained in Q(E[k]). We have Gal(Lk/Q) 5 GL2(Z/kZ) and

Gal(Q(ζk)/Q) 5 (Z/kZ)∗,
GL2(Z/kZ)

SL2(Z/kZ)
5 (Z/kZ)∗.

Thus, to prove the desired assertion it suffices to show that the commutator
GL2(Z/kZ)′ of GL2(Z/kZ) is SL2(Z/kZ). This can be deduced easily by us-
ing the Chinese Remainder Theorem to write GL2(Z/kZ) 5

∏
qr ||k GL2(Z/qrZ)

and by using [Br, Theorem 1.4 a, p. 474] that for odd primes q, GL2 (Z/qrZ)′ =
SL2 (Z/qrZ). Since k is coprime to A(E), all its prime factors are odd, and so we
are done.

2. Let k1 be a positive integer composed of primes dividing A(E), and k2 a
positive integer composed of primes coprime to A(E). Then (k1, k2) = 1. Using
parts 2 and 3 of Proposition 3.5 and part 1 of our proposition, we obtain that
Q(ζk1) ∩ Q(E[k2]) = Q. Since Q(E[k1k2]) = Q(E[k1])Q(E[k2]), we obtain

n(k1k2) ≥ [Q(ζk1) : Q][Q(E[k2]) : Q] = φ(k1)n(k2).
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Now we note that part 1 tells us that

n(k2) = # GL2(Z/k2Z) = k4
2

∏

l|k2

(
1 − 1

l

) (
1 − 1

l2

)
= φ(k2)k

3
2

∏

l|k2

(
1 − 1

l2

)
,

where the products are over primes l. Thus

n(k) = n(k1k2) ≥ φ(k)k3
2

∏

l

(
1 − 1

l2

)
+ φ(k)k3

2 .

12

As explained in [Co3, p. 27] or [Co4], one can refine the proof of [Se4, Lemma
19, p. 198] to deduce upper bounds for A(E).

Proposition 3.7. Let E be a non-CM elliptic curve defined over Q and of con-
ductor N . Let A(E) be Serre’s constant associated to E. We assume GRH for the
Dedekind zeta functions of the division fields of E. Then there exists a positive
constant a, not depending on E, such that

A(E) ≤ a(log N)(log log 2N)3.

We also recall that, unconditionally, A(E) .ε N1+ε for any ε > 0 (see [Co4])
and, moreover, if E is semistable (that is, N is square-free), then A(E) is an
absolute constant (see [Ma]).

Good estimates for the size of n(k) in the case of a CM elliptic curve can be
obtained as a consequence of deep results in the theory of complex multiplication.
Before stating the result, we recall that if OK is the ring of integers of a num-
ber field K and if p is a non-zero prime ideal of OK , then the generalized Euler
function of pa for some positive integer a is

((pa) = NK/Q(pa)

(
1 − 1

NK/Q(p)

)
,

where NK/Q(·) denotes the norm of K over Q; by multiplicativity, one extends
the definition of ((·) to all non-zero ideals of OK .

Proposition 3.8. Let E be a CM elliptic curve defined over Q and with complex
multiplication by the full ring of integers OK of an imaginary quadratic field K .
Then for any positive integer k ≥ 3 we have

n(k) / ((kOK),

where ((·) denotes the generalized Euler function corresponding to the ring of
integers OK . In particular,

φ(k)2 . n(k) . k2.
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Proof. The very first estimate is obtained as a consequence of deep results in the
theory of complex multiplication, as follows. We let h(·) denote the Weber func-
tion of E. Then we know that K(jE, h(E[k])) is the ray class field of K modulo
k (see [Si2, Theorem 5.6, p. 135]), where jE denotes the j -invariant of E. We
obtain that

[K(jE, h(E[k])) : K] = hK((kOK)

WK

,

where hK denotes the class number of K and WK the number of roots of unity in
K .

Since E is a CM elliptic curve defined over Q, we have that its CM field K is an
imaginary quadratic field of class number 1. This implies that K(jE, h(E[k])) =
K(h(E[k])), that WK is bounded absolutely, and, moreover, that

[K(h(E[k])) : K] / ((kOK).

Now let us recall that E[k] 5 Z/kZ ⊕ Z/kZ, and so, by choosing two fixed
generators for E[k], we get that [K(E[k]) : K(h(E[k]))] is bounded absolutely.

Putting all these observations together we obtain

[Q(E[k]) : Q] / [K(E[k]) : K] / [K(h(E[k])) : K] / ((kOK).

12

4. Proof of Theorem 1.1

1. We estimate
∑

main by using the effective Chebotarev Density Theorem 3.1,
together with the estimates given in Lemma 3.4 and with parts 1 and 2 of Propo-
sition 3.5. We obtain that

∑
main

=
∑

k≤y

µ(k)π1(x, Q(E[k])/Q)

=




∑

k≤y

µ(k)

n(k)



 li x +
∑

k≤y

O
(
x1/2 log(kNx)

)

=




∑

k≤y

µ(k)

n(k)



 li x + O
(
yx1/2 log(Nx)

)
, (12)

where n(k) is defined in (11).
It remains to estimate

∑
error. For each integer a with |a| ≤ 2

√
x and for each

positive square-free integer k we let

Sa(k) :=
{
p ≤ x : ap = a, p splits completely in Q(E[k])/Q

}
.
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Then, using Hasse’s inequality,
∣∣∣
∑

error

∣∣∣ ≤
∑

y<k≤2
√

x
k square-free

∑

a∈Z
|a|≤2

√
x

#Sa(k). (13)

We see that by using part 3 of Proposition 3.5 and Lemma 2.1 we have that
p ∈ Sa(k) implies p ≡ 1(mod k) and p + 1 − a ≡ 0(mod k2); hence k|(a − 2).
We then obtain

∑

y<k≤2
√

x
k square-free

∑

a∈Z
|a|≤2

√
x

#Sa(k) ≤
∑

y<k≤2
√

x
k square-free

∑

a∈Z
|a|≤2

√
x

a ,=2,k|a−2

∑

p≤x
ap=a

k2|p+1−a

1

+
∑

y<k≤2
√

x
k square-free

∑

p≤x
ap=2

k2|p−1

1

=:
∑∗

+
∑∗∗

. (14)

We use elementary estimates to handle
∑∗

and
∑∗∗

:

∑∗
≤

∑

y<k≤2
√

x
k square-free

∑

a∈Z
|a|≤2

√
x

a ,=2,k|a−2

( x

k2
+ 1

)

.
∑

y<k≤2
√

x
k square-free

( x

k2
+ 1

) (√
x

k
+ 1

)

. x3/2

y2
+ x

y
+

√
x log

x

y
+

√
x; (15)

∑∗∗
≤

∑

y<k≤2
√

x
k square-free

( x

k2
+ 1

)
. x

y
+

√
x. (16)

Plugging (12)–(16) into (10) gives

f (x, Q) =




∑

k≤y

µ(k)

n(k)



 li x + O
(
x1/2y log(Nx)

)

+ O
(

x3/2

y2

)
+ O

(√
x log

x

y

)
+ O

(
x

y

)
.
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Now we choose y such that x1/2y log(Nx) = x3/2

y2 , that is, we choose

y :=
(

x

log(Nx)

)1/3

.

Then

f (x, Q) =




∑

k≤y

µ(k)

n(k)



 li x + O
(
x5/6(log(Nx))2/3) . (17)

It remains to analyze the tail



∑

k>y

µ(k)

n(k)



 li x = fE li x −




∑

k≤y

µ(k)

n(k)



 li x.

In what follows, k, k1, and k2 will denote positive square-free integers. We write
each k > y as k = k1k2 with k1, k2 uniquely determined such that k1 is composed
of primes dividing A(E) and k2 is composed of primes coprime to A(E). Using
part 2 of Proposition 3.6 we get

∑

k>y
k square-free

k=k1k2

1
n(k)

≤
∑

k1

1
φ(k1)

∑

k2>
y
k1

1
φ(k2)k

3
2

.
∑

k1

1
φ(k1)

∑

k2>
y
k1

log log k2

k4
2

.
∑

k1

1
φ(k1)

∫ ∞

y
k1

log log t

t4
dt . log log y

y3

∑

k1

k3
1

φ(k1)

= log log y

y3

∏

q|A(E)

(
1 + q3

q − 1

)

≤ log log y

y3
A(E)2 exp(ν(A(E)))

≤ log log y

y3
A(E)3, (18)

where we have also used that φ(t) + t
log log t

and ν(t) ≤ log t
log 2 . Plugging (18) into

(17) finally gives

f (x, Q) = fE li x + O
(
x5/6(log(Nx))2/3) + O

(
(log log x)(log(Nx))

log x
A(E)3

)
.

This completes the proof of part 1 of Theorem 1.1.
2. Now we assume that GRH, AHC and PCC hold for the Artin L-functions

attached to the irreducible characters of the Galois groups of the division fields of
E. Therefore, in estimating

∑
main we can use the improved Chebotarev Density
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Theorem given by Theorem 3.2. To use this result, we first need to estimate the
factor #G̃k

#Gk
for all positive square-free integers k ≤ y, where Gk is the image of

Gal(Q(E[k])/Q) under the Galois representation φk associated to E and G̃k is
the set of conjugacy classes of Gk. As before, we write k ≤ y as k = k1k2 with k1

composed of primes dividing A(E) and k2 composed of primes coprime to A(E).
Since

#G̃k ≤
(
#G̃k1

) (
#G̃k2

)
,

it suffices to estimate #G̃k1 and #G̃k2 . Using the description of the possible groups
Gq for primes q|A(E) given in [Se2] and [Se4, p. 197], we obtain that

#G̃k1 ≤
∏

q|k1

#G̃q ≤
∏

q|k1

#Gq . k2
1φ(k1),

and using the surjectivity of φk2 , we obtain that

#G̃k2 = # ˜GL2(Z/k2Z) = k2φ(k2).

These estimates and the lower bound for #Gk given by part 2 of Proposition 3.6
give us

#G̃k

#Gk

. k2
1k2φ(k)

φ(k)k3
2

= k2
1

k2
2
.

Then, with M(Lk/Q) defined as in Section 3.1 and estimated using Lemma 3.4 and
parts 1 and 2 of Proposition 3.5, we obtain that the error term in

∑
main becomes

∑

k≤y
k square-free

k=k1k2

O

(

x1/2
(

#G̃k

#Gk

)1/4

log(M(Lk/Q)x)

)

= O



x1/2 log(Nx)
∑

k1

k
1/2
1

∑

k2≤ y
k1

1

k
1/2
2





= O



x1/2 log(Nx)
∑

k1

k
1/2
1

(
y

k1

)1/2




= O
(
x1/2y1/22ν(A(E)) log(Nx)

)

= O
(
x1/2y1/2A(E) log(Nx)

)
,

where we have also used that ν(t) ≤ log t
log 2 . Therefore

∑
main

=




∑

k≤y

µ(k)

n(k)



 li x + O
(
x1/2y1/2A(E) log(Nx)

)
.
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We point out that the additional conjectures AHC and PCC allowed us to obtain
y1/2 instead of y in the above error terms (compare with (12)). For

∑
error and

the tail
∑

k>y

µ(k)

n(k)
li x we proceed exactly as in part 1. We now choose y such that

x1/2y1/2 log(Nx) = x3/2

y2 , that is, we choose

y :=
(

x

log(Nx)

)2/5

.

Plugging this into our estimates leads to

f (x, Q) = fE li x + O
(
x7/10(log(Nx))4/5A(E)

)

+ O
(

(log log x)(log(Nx))6/5

x1/5 log x
A(E)3

)
.

This completes the proof of part 2 of Theorem 1.1.

Remark 4.1. If we use the estimate ν(t) . log t
log log t

instead of the more elementary

one ν(t) ≤ log t
log 2 , then we can slightly improve our error terms above to obtain

f (x, Q) = fE li x +O
(
x5/6(log(Nx))2/3)+Oε

(
(log log x)(log(Nx))

log x
A(E)2+ε

)

under GRH, and

f (x, Q) = fE li x + Oε
(
x7/10(log(Nx))4/5A(E)ε

)

+ Oε

(
(log log x)(log(Nx))6/5

x1/5 log x
A(E)2+ε

)

under GRH, AHC and PCC, for any 0 < ε < 1.

5. Proof of Theorem 1.2

The sum
∑

main is estimated exactly as in the proof of part 1 of Theorem 1.1. For
the sum

∑
error we make two separate analyses according to whether ap ,= 0 or

ap = 0. We recall that a prime p is said to have ordinary reduction if ap ,= 0, and
supersingular reduction otherwise. We write
∑

error
≤

∑

y<k≤2
√

x
k square-free

πo
1 (x, Q(E[k])/Q) +

∑

y<k≤2
√

x
k square-free

πs
1(x, Q(E[k])/Q), (19)

where

πo
1 (x, Q(E[k])/Q)

:= #{p≤x : p has ordinary reduction and splits completely in Q(E[k])/Q},
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πs
1(x, Q(E[k])/Q)

:=#{p≤x :p has supersingular reduction and splits completely in Q(E[k])/Q}.

Let us estimate ∑

y<k≤2
√

x
k square-free

πo
1 (x, Q(E[k])/Q).

As explained for example in [Co2] we have that p splits completely in Q(E[k])/Q
if and only if πp−1

k
is an algebraic integer, where πp denotes a complex root of the

polynomial X2 − apX +p. Since E has complex multiplication by Q(
√

−D) for
some square-free D < 0, we obtain that, for primes p of ordinary good reduction,
Q(πp) = Q(

√
−D). Therefore

πo
1 (x, Q(E[k])/Q) ≤ #

{
p ≤ x :

πp − 1
k

∈ OQ(
√

−D)

}
,

where OQ(
√

−D) denotes the ring of algebraic integers of Q(
√

−D). We observe
that the norm of πp in Q(

√
−D)/Q is p, hence

#
{
p ≤ x :

πp − 1
k

∈ OQ(
√

−D)

}
≤ Sk,

where Sk is S1
k if −D ≡ 2, 3(mod 4), and S2

k if −D ≡ 1(mod 4), and

S1
k := #

{
p ≤ x : p = (αk + 1)2 + Dβ2k2 for some α, β ∈ Z

}
,

S2
k := #

{
p ≤ x : p =

(α
2

k + 1
)2

+ D
β2

4
k2 for some α, β ∈ Z

}
.

For any k, x and 1 ≤ i ≤ 2 we have the elementary estimate

Si
k .

√
x

k
√

D

(
2
√

x

k
+ 1

)
.

Therefore
∑

y<k≤2
√

x
k square-free

πo
1 (x, Q(E[k])/Q) .

∑

y<k≤2
√

x
k square-free

(
x

k2
√

D
+

√
x

k
√

D

)

. x

y
√

D
+

√
x log x√

D
. (20)

The summation ∑

y<k≤2
√

x
k square-free

πs
1(x, Q(E[k])/Q)
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counts primes p for which k2|(p + 1 − ap) and k|(p − 1). Hence k|2, which is a
contradiction with k > y = y(x). This implies that

∑

y<k≤2
√

x
k square-free

πs
1(x, Q(E[k])/Q) = 0. (21)

Plugging (12) and (19)–(21) into (10) gives

f (x, Q) =




∑

k≤y

µ(k)

n(k)



 li x+O
(
x1/2y log(Nx)

)
+O

(
x

y
√

D

)
+O

(√
x log x√

D

)
.

We note that the discriminant D is fixed and, moreover, bounded, as we are in
the CM case. Thus it will play no role in our error terms above.

We now choose y such that x1/2y log(Nx) = x
y

, that is, we choose

y := x1/4

(log(Nx))1/2
.

This implies that

f (x, Q) =




∑

k≤y

µ(k)

n(k)



 li x + O
(
x3/4(log(Nx))1/2) .

It remains to analyze the tail




∑

k>y

µ(k)

n(k)



 li x. From Proposition 3.8 we know

that for any positive square-free integer k ≥ 3, n(k) + φ(k)2. Also, we recall
that as k → ∞, φ(k) + k

log log k
. Then, by partial summation, we get that

∑

k>y

µ(k)

n(k)
.

∑

k>y
k square-free

(log log k)2

k2
. (log log y)2

y
. (22)

Using our previous estimates and our choice of y we finally obtain

f (x, Q) = fE li x + O
(
x3/4(log(Nx))1/2) .

This completes the proof of Theorem 1.2.

Remark 5.1. We observe that in the CM case the Galois group Gal(Q(E[k])/Q)

is ‘almost abelian’ (in the sense explained in Remark 3.3 of Section 3). Therefore
Theorem 3.2 will not give us better error terms than the ones already obtained by
using Theorem 3.1.
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6. Finiteness and positivity of the density fE

Let E be an elliptic curve defined over Q and let fE be its cyclicity constant
defined by (3). We want to justify that fE is finite and that it is positive if and only
if Q(E[2]) ,= Q.

If E is a non-CM curve, then let A(E) be Serre’s constant associated to E and
write each positive square-free integer k as k = k1k2 for some positive square-free
integers uniquely determined such that k1 is composed of prime divisors of A(E)

and k2 is coprime to A(E). Then, as in the discussion for (18), we have

fE .
∏

q|A(E)

(
1 + 1

q − 1

) ∑

k2≥9

log log k2

k4
2

,

which is certainly finite.
If E is a CM curve, then, as in the discussion for (22), we have

fE .
∑

k≥9

(log log k)2

k2
,

which, again, is finite.
Let us justify that if fE ,= 0, then Q(E[2]) ,= Q. We observe that if Q(E[2]) =

Q, then the torsion group E(Q)tors of rational points on E contains a subgroup of
the form Z/2Z×Z/2Z. Since for all primes p, except for a finite number of them,
the group E(Q)tors embeds into E(Fp), we deduce that fE = 0. This observation
also shows the stronger fact that if Q(E[2]) = Q, then there are only finitely
many primes p for which E(Fp) is cyclic.

The converse of the above statement can be proven immediately by combining
(5) with part 1 of Theorem 1.1 and with Theorem 1.2. Indeed, if Q(E[2]) ,= Q,
then

fE li x + OE

(
xθ(log x)δ

)
+E

x

(log x)2
, (23)

where θ = 5
6 , δ = 2

3 in the non-CM case, and θ = 3
4 , δ = 1

2 in the CM case. By
multiplying (23) by log x/x and by taking x → ∞, we obtain fE > 0.

Now let us give unconditional arguments for why fE > 0 if Q(E[2]) ,= Q
(recall that Theorems 1.1 and 1.2 assume GRH). We will consider the non-CM
and CM cases separately. First we will prove a lemma of a more general interest.

Lemma 6.1. Let F = (Lq)q∈P , F ′ = (L′
q)q∈P ′ be two families of finite Galois

extensions of a number field L, indexed over sets of rational primes P ⊇ P ′. For
any square-free integer k composed of primes of P or P ′, let Lk :=

∏
q|k,q∈P Lq

and L′
k :=

∏
q|k,q∈P ′ L′

q , respectively. Also let n(k) := [Lk : L], n′(k) := [L′
k :

L], and

δ(F) :=
∑

k
q|k⇒q∈P

µ(k)

n(k)
, δ(F ′) :=

∑

k
q|k⇒q∈P ′

µ(k)

n′(k)
,
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where n(1) = n′(1) = 1. We assume that:

1. F covers F ′, that is, for any q ′ ∈ P ′ there exists q ∈ P such that L′
q ′ ⊆ Lq

and for any q ∈ P there exists q ′ ∈ P ′ such that L′
q ′ ⊆ Lq;

2.
∑

k
q|k⇒q∈P

1
n(k)

< ∞,
∑

k
q|k⇒q∈P ′

1
n′(k)

< ∞.

Then δ(F) ≥ δ(F ′).

Proof. Let us consider an arbitrary finite subset Pf of P and take P ′
f to be the

finite subset of P ′ such that (Lq)q∈Pf covers (L′
q)q∈P ′

f
(in the sense of assumption

1). Also, set

δPf (F) :=
∑

k
q|k⇒q∈Pf

µ(k)

n(k)
, δP ′

f
(F ′) :=

∑

k
q|k⇒q∈P ′

f

µ(k)

n′(k)
,

P (x,F ,Pf ) := #{p : NL/Q(p)≤x, p does not split completely in Lq ∀q ∈Pf },
P (x,F ′,P ′

f ) := #{p : NL/Q(p)≤x, p does not split completely in L′
q ∀q ∈P ′

f },
where x is any positive real number, p are prime ideals of the ring of integers of
L, and NL/Q is the norm of L/Q.

Since Pf covers P ′
f , we clearly have

P(x,F ,Pf ) ≥ P(x,F ′,P ′
f ) (24)

for any x. On the other hand, by the inclusion-exclusion principle and the
Chebotarev Density Theorem we have

P(x,F ,Pf ) =
∑

k
q|k⇒q∈Pf

µ(k)

n(k)
li x + o

(
x

log x

)
, (25)

P(x,F ′,P ′
f ) =

∑

k
q|k⇒q∈P ′

f

µ(k)

n′(k)
li x + o

(
x

log x

)
, (26)

since the sums over k are finite. Combining (24) with (25) and (26), and taking
x → ∞, leads us to

δPf (F) ≥ δP ′
f
(F ′).

This inequality holds for any finite subset Pf of P and its corresponding finite
subset P ′

f of P ′. By taking the limit as Pf approaches P we obtain the desired
inequality. 12
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Corollary 6.2. We keep the setting and the hypotheses of Lemma 6.1. If the fields
in F ′ are mutually independent, then

δ(F) ≥
∏

q∈P ′

(
1 − 1

n′(q)

)
.

We will use Corollary 6.2 to show that if E is a non-CM elliptic curve defined
over Q and such that Q(E[2]) ,= Q, then fE > 0. As usual, let N be the conduc-
tor of E and A(E) be Serre’s constant associated to E. We define F = (Lq =
Q(E[q]))q≥2. To define F ′ = (L′

q)q , let us first note that [Q(E[2]) : Q] is either
2, 3 or 6, and let K2 be the unique abelian subextension contained in Q(E[2])
(note that we may have Q(E[2]) = K2). Then we define

L′
q :=






Lq if q ! NA(E),

Q(ζq) if q|NA(E), q ,= 2, Q(ζq) ∩ K2 = Q,
K2 if q = 2 or q|NA(E), q ,= 2, Q(ζq) ∩ K2 = Q.

We see that the families F , F ′ satisfy the hypotheses of Lemma 6.1.
Moreover, from part 2 of Proposition 3.5 and part 1 of Proposition 3.6 we see

that F ′ consists of mutually independent fields. Therefore

fE ≥ 1
2

∏

q|NA(E)
q ,=2

Q(ζq )∩K2=Q

(
1 − 1

φ(q)

) ∏

q!NA(E)

(
1 − 1

n(q)

)
> 0.

The above analysis also shows that

fE +
∏

q|NA(E)

(
1 − 1

q − 1

)
,

since for q ! NA(E) we have that n(q) / q4, by Serre’s theorem. We can invoke
now Mertens’ theorem [HaWr, p. 351] (or elementary estimates for the Euler
function) to deduce that

∏

q|NA(E)
q ,=2

(
1 − 1

q − 1

)
+ 1

log log(NA(E))
.

Then, by Proposition 3.7 we obtain that, under GRH,

fE + 1
log log log N

. (27)

Similarly, by the unconditional upper bound A(E) .ε N1+ε for any ε we obtain
that, under no hypothesis,

fE + 1
log log N

.
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Now let us consider the case of a CM elliptic curve E defined over Q and
such that Q(E[2]) ,= Q, and let us use again Corollary 6.2 to show that fE > 0.
We let F = (Lq = Q(E[q]))q≥2, and, as before, we let K2 be the unique abelian
subextension of Q(E[2]). Also let K be the complex multiplication field of E. We
recall that K(E[q]) = Q(E[q]) for any prime q ≥ 3 (see [Mu1, Lemma 6]) and
we observe that since K is a quadratic field and K2 is a cubic or quadratic field,
we have either K2 = K or K2 ∩ K = Q. If K2 = K we take F ′ = (K2) and so

fE ≥ 1
2
,

and if K2 ∩ K = Q we take F ′ = (K2, K) and so

fE ≥ 1
4
.

This completes the proof of the finiteness and positivity of fE .

Remark 6.3. A careful study of the arguments in [Mu1, pp.161–167] for an uncon-
ditional proof of the asymptotic formula (2) in the case of a CM elliptic curve
E defined over Q and of conductor N will lead to error(E, x) = ON

(
x

(log x)B

)

for any sufficiently large positive constant B. By combining this with (5) we can
deduce again, unconditionally, that if Q(E[2]) ,= Q, then fE > 0.

7. Proof of Theorem 1.3

We use the asymptotic formula for f (x, Q) given by part 1 of Theorem 1.1 more
precisely, we compare the main term fE li x ∼ fE

x
log x

with the error terms

O
(
x5/6(log(Nx))2/3) and O

(
(log log x)(log(Nx))

log x
A(E)3

)
.

In doing so, we recall that under the current hypothesis we haveA(E) = O
(
(log N)

(log log 2N)3
)

(see Proposition 3.7). Thus the second error term above is

O
(

(log log x)(log(Nx))

log x
(log N)3(log log 2N)6

)
.

To find an upper estimate for the smallest x for which the main term is bigger
than the error terms we can take x = (log N)α for some α, chosen such that

(log N)α

α(log log N)(log log log N)
+ (log N)

5
6α (log N + α log log N)

2
3 (28)

and
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(log N)α

α(log log N)(log log log N)
+ (logα + log log log N)(log N + α log log N)

α log log N
× (log N)3(log log 2N)6, (29)

where we have also used the lower bound (27) for the density fE . Inequality (28)
gives us α ≥ 5

6α+ 2
3 +ε, or, equivalently, α ≥ 4+ε for any ε > 0, and inequality

(29) gives us α ≥ ε + 1 + 3, or, equivalently, α ≥ 4 + ε for any ε > 0. Thus the
smallest x for which the main term is bigger than the error terms is

Oε
(
(log N)4+ε) ,

as claimed in the statement of the theorem.

Remark 7.1. The additional hypotheses AHC and PCC do not seem to lead to bet-
ter estimates for pE following this approach. Also, the slight improvements given
in Remark 4.1 do not lead to better estimates for pE , either.

8. Proof of Theorem 1.4

Similarly to the non-CM case, this result follows easily from Theorem 1.2 by
comparing the main term with the error term. Note that in this case we can use
the absolute lower bound fE ≥ 1/4 in the main term.

9. Final remarks

The high quality of the error terms in Theorems 1.1 and 1.2 leads us to suspect
that the question about the cyclicity of E(Fp) has a sharp divergence with the
classical primitive root conjecture of Artin. Under GRH, it seems that we can do
no better than obtain an error term of the form

O
(

x log log x

(log x)2

)

in the primitive root problem.
It is possible that a delicate application of the lower bound sieve may lead to

unconditional versions of Theorems 1.3 and 1.4. We reserve these investigations
for a future paper. It will suffice for the moment to say that, in the CM case, the
availability of a Bombieri-Vinogradov type theorem should make this hope feasi-
ble. As a first step, this would mean re-working the lower bound sieve technique
and keeping track of the dependence of the error terms on the conductor of the
elliptic curve.
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