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1. Introduction and statement of results

It is a classical result, proven by Dirichlet, that, given any coprime integers a,d, there exist in-
finitely many primes p ≡ a (mod d). The most precise version of this result, due to de la Vallée
Poussin, assumes the Generalized Riemann Hypothesis (GRH) for Dirichlet L-functions and states that
the function

π(x;d,a) := #
{
p ! x: p prime, p ≡ a (mod d)

}

satisfies

π(x;d,a) = 1
φ(d)

li x+ O
(
x

1
2 log(dx)

)
, (1)

where φ(d) is the Euler function of d and li x is the logarithmic integral. The O-constant is absolute
and the GRH assumption is reflected in the exponent of x in the O-term; in fact, GRH is equivalent to
this exponent being 1

2 . Moreover, in order for (1) to be meaningful, d should be such that the main

term dominates the remainder; for instance, d ! x
1
2 −ε for any ε > 0.

The importance of (1) cannot be overstated. Indeed, the study of many of the major conjectures
in classical number theory reduces to fine questions about the distribution of primes in arithmetic
progressions, for infinitely many progressions. The size of the error term in statements such as (1) is
then essential. Without GRH, the analogue of (1), known as the Siegel–Walfisz Theorem, states that,
for any A > 0, there exists a positive constant c(A) such that

π(x;d,a) = 1
φ(d)

li x+O
(
xexp

(
−c(A)

√
log x

))
. (2)

Here, the modulus d should satisfy d ! (log x)A . This very restricted range of d makes (2) quite unsat-
isfactory, despite the result being unconditional.

In many cases, to compensate for the lack of a good unconditional error term, one can appeal to
average results, such as the now standard Bombieri–Vinogradov Theorem: for any A > 0, there exists
B > 0 such that

∑

d! x
1
2

(log x)B

max
y!x

max
a

(a,d)=1

∣∣∣∣π(y;d,a) − 1
φ(d)

li y
∣∣∣∣ $A

x
(log x)A

. (3)

We may interpret (3) as saying that (1) holds on average, without any unproven hypothesis.
While this is a very powerful result, let us note that the possible range of the modulus d is (1, x),

and (3) handles only (1, x
1
2 /(log x)B). Enlarging this range is a major open problem in analytic number

theory, as illustrated by the notoriously difficult Elliott–Halberstam Conjecture: for any A, ε > 0, we
expect that

∑

d!x1−ε

max
y!x

max
a

(a,d)=1

∣∣∣∣π(y;d,a) − 1
φ(d)

li y
∣∣∣∣ $A,ε

x
(log x)A

. (4)

Dirichlet’s Theorem and its refined formulations (1), (2) are only basic instances of the more gen-
eral Chebotarev Density Theorem applied to the cyclotomic field Q(ζd). Versions of (1) and (2) in
the general Chebotarev situation of Galois extensions of number fields were proven by Lagarias and
Odlyzko [LaOd] and assume, as in the classical case, strong restrictions in terms of x on the size of
the arithmetic invariants of the number fields considered, even under the assumption of GRH (for
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Dedekind zeta functions). At the same time, no general version of (3) for an arbitrary families of
Galois extensions of number fields is yet known.

In spite of these deficits, for some special families of number fields, closely related to cyclotomic
fields, some average versions of the Chebotarev Density Theorem can be proven. For example, by
considering an elliptic curve E defined over Q, with a non-trivial endomorphism ring, and by focusing
on its division fields Q(E[d]), the results of M.R. Murty [Mu, Theorem 3] may be restated as saying
that the function

π1
(
x,Q

(
E[d]

)
/Q

)
:= #

{
p ! x: p prime, p splits completely in Q

(
E[d]

)}

satisfies

∑

d"1
d squarefree

π1
(
x,Q

(
E[d]

)
/Q

)
∼

( ∑

d"1
d squarefree

1
[Q(E[d]) : Q]

)
li x (5)

as x → ∞. By assuming GRH for Dedekind zeta functions, this result can be much improved; indeed,
the results of this paper’s first author and M.R. Murty [CoMu, Theorem 1.2] may be restated as

∑

d"1
d squarefree

(
π1

(
x,Q

(
E[d]

)
/Q

)
− 1

[Q(E[d]) : Q] li x
)

$E x
3
4 (log x)

1
2 . (6)

Note that in both (5) and (6) the range of d is the maximal allowable as a function of x. This turns
out to be d ! x

1
2 + 1, which is much shorter than in the classical situation, and thus easier to handle.

Over the years, it has been a fruitful theme of research to explore parallels and differences between
the number field and function field situations. The study of this theme in the case of primes in
arithmetic progressions is already abundant in both analogies and non-analogies. Our goal in this
paper is to continue this study and explore function field analogues of (5) and (6) in the context of Drinfeld
modules. For this purpose, let us introduce some notation and a brief context.

We let q be an odd prime power, fixed throughout the paper. We denote by Fq the finite field
with q elements, by F∗

q its group of units, by Fq an algebraic closure of Fq , and by τ : x (→ xq the q-th
power Frobenius automorphism. We denote by A := Fq[T ] the polynomial ring over Fq , by A(1) the
set of monic polynomials in A, by k := Fq(T ) its field of fractions, by k an algebraic closure of k, and
by ksep a separable closure of k in k.

We recall that 1
T identifies with the “prime at infinity” of k, while the monic irreducible polyno-

mials of A identify with the “finite primes” of k. We will simply refer to the latter as the primes of k.
We recall that a finite field extension k′ of k is called imaginary if there is only one prime in k′ lying
above the infinite prime in k.

We shall denote the elements of A (mostly) by d, the elements of A(1) (mostly) by m, the irre-
ducible elements of A(1) by p and ', and the (finite) primes of k by p = pA, l = 'A, with p, ' ∈ A(1) .
For d ∈ A, we use the standard notation:

• degd for the degree of d as a polynomial in T ;
• |d|∞ := qdegd if d += 0, and |0|∞ := 0.

As with rational primes in arithmetic progression, given any coprime a,d ∈ A with d non-constant,
there exist infinitely many primes p ∈ A(1) with p ≡ a (mod d). Moreover, the function

πA(x;d,a) := #
{
p ∈ A(1): deg p = x, p ≡ a (mod d)

}
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satisfies

πA(x;d,a) = 1
φA(d)

· q
x

x
+O

(
q

x
2

x
degd

)
, (7)

where φA(d) := #(A/dA)∗ is the Euler function of d, qx

x is the growth of the prime counting function
πA(x) := #{p ∈ A(1): deg p = x}, and the O-constant is absolute. As in the classical case (1), this
asymptotic is meaningful provided |d|∞ < q

x
2 −ε for any ε > 0. However, unlike the classical case, this

holds unconditionally, thanks to Weil’s proof of the Riemann Hypothesis for curves over finite fields
(reflected in the exponent x

2 of q in the error term).
Once again, (7) is only a particular case of the more general Chebotarev Density Theorem for Galois

extensions of global function fields. As with rational primes, it is natural to consider this theorem not
only for one extension (e.g. one d), but for infinitely many extensions (e.g. infinitely many d), and also
to enlarge the range of d to the maximum allowable. We will prove such a statement by focusing on
a special family of function fields, as follows.

We denote by DrinA(k) the category of Drinfeld A-modules over k (necessarily of generic
A-characteristic). For ψ : A −→ k{τ } an object in DrinA(k), we denote by

Endk(ψ) :=
{
f ∈ k{τ }: f ψd = ψd f ∀d ∈ A

}

the endomorphism ring of ψ over k, and for each non-zero d ∈ A, we denote by k(ψ[d]) the d-division
field obtained by adjoining to k the d-division module of ψ , that is,

ψ[d] :=
{
λ ∈ k: ψd(λ) = 0

}
.

We denote by

cd :=
[
k
(
ψ[d]

)
∩ Fq : Fq

]

the degree of the constant field of k(ψ[d]) over Fq , and we define, for any arbitrary positive integer x,

cd(x) :=
{
cd if cd|x,
0 otherwise.

(8)

Our main result is:

Theorem 1. Let q be an odd prime power and, as above, let A := Fq[T ], k := Fq(T ). Let ψ ∈ DrinA(k) be of
rank 2. We assume that Endk(ψ) is the full ring of integers of an imaginary quadratic extension of k. Then, as
x → ∞,

∑

m∈A(1)

(
#
{
p ∈ A(1): deg p = x, pA splits completely in k

(
ψ[m]

)
/k

}
− cm(x)

[k(ψ[m]) : k]πA(x)
)

$ψ q
3
4 x log x.

Note that this is an analogue of (6), which is obtained unconditionally. A similar, but weaker,
result was obtained in [CoSh] in the setting of Theorem 1, without fully using the assumption on the
endomorphism ring of ψ ; specifically, the authors proved that, as x → ∞,
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∑

m∈A(1)

(
#
{
p ∈ A(1): deg p = x, pA splits completely in k

(
ψ[m]

)
/k

}
− cm(x)

[k(ψ[m]) : k]πA(x)
)

$ψ q
5
6 x.

On the other hand, the strength of the results of [CoSh] is that they apply to Drinfeld modules in
higher generality (higher rank and more general function fields).

As an application to the (proof of) Theorem 1, we obtain that

#
{
p ∈ A(1): deg p = x, ψ(Fp) is A-cyclic

}
=

( ∑

m∈A(1)

µA(m)cm(x)
[k(ψ[m]) : k]

)
· q

x

x
+Oψ

(
q

3x
4 log x

)
, (9)

where Fp is the residue field of p = pA, ψ(Fp) is the A-module structure on Fp defined by the
reduction of ψ modulo p, and µA(·) is the Möbius function of A.

To prove these results, we do use an effective version of the Chebotarev Density Theorem. The
application of Chebotarev requires, in particular, estimates for the size of the Galois groups of the
division fields of ψ , for which, in our present situation, we rely on results of Hayes from his celebrated
paper [Ha].

As usual in such problems, we must find adhoc ways to extend the range of applicability of Cheb-
otarev, which is where the main contributions to the proof methods lie. For Theorem 1, we make use
of both the average over m and of the rank 2 and CM assumptions on the Drinfeld module. These as-
sumptions lead to a very convenient reinterpretation of the splitting completely property: an ordinary
prime p splits completely in k(ψ[m]) if and only if the Weil root π = πψ,pA of the reduction of ψ at
p has the property that π−1

m is an algebraic integer in Endk(ψ) ⊗A k. We then use elementary sieving
to average such primes over m. Since there are no supersingular primes p which split completely in
k(ψ[m]) for m of sufficiently large degree and since the primes of good reduction of a rank 2 (generic)
Drinfeld module ψ are either ordinary or supersingular, there is nothing left to estimate.

It is natural to consider the analogue of Theorem 1 (that is, an improvement of the error terms
in some of the results of [CoSh]) for Drinfeld modules of higher rank, a task which we relegate to a
future study. Since the size of the error terms in such density estimates is intimately connected to the
zeroes of the L-functions involved, it is also natural to investigate the meaning of our small error term
Oψ(q

3
4 x log x) in terms of the zeroes of the Artin L-functions associated to the family (k(ψ[m]))m∈A(1) ;

this, again, we relegate to a future study.

2. Preliminaries

Throughout the paper, we shall use the notation introduced in Section 1 and the auxiliary standard
notation and results below. We reserve the notation ψ for Drinfeld A-modules over k (not necessarily
of rank 2), and Ψ for Drinfeld modules over more general rings A and A -fields L . As for k, the
letters p and l will denote finite primes of L .

For a more comprehensive treatment of some of the material in Section 2, we refer the reader to
[Go,Ro] and [Th].

2.1. Division fields

We record below the properties of the division fields of a Drinfeld module that will be used in the
proof of Theorem 1. Since these properties span a vast part of the theory of Drinfeld modules, our
presentation may seem slightly intricate.

2.1.1. Ramification
Let K be an arbitrary function field, ∞ a fixed prime of K , A the ring of functions on K

regular away from ∞, and L an A -field of generic A -characteristic.
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Let Ψ be a Drinfeld A -module over L , of rank r. Let p be a prime of L , of good reduction for Ψ ,
and let

Ψ ⊗ Fp : A −→ Fp{τ }

be the reduction of Ψ modulo p, where Fp is the residue field of p. We denote by

Ψ (Fp)

the A -module structure on Fp defined by Ψ ⊗ Fp .
By classical theory, all but finitely many primes of L are of good reduction for Ψ . We denote their

set by

PΨ .

For the purpose of our paper, these primes are relevant in the following way:

Proposition 2 (Ramification criterion). (See [Ta, Theorem 1, p. 477].) Let K be an arbitrary function field,
∞ a fixed prime of K , A the ring of functions on K regular away from ∞, and L an A -field of generic
A -characteristic. LetΨ be a DrinfeldA -module over L . Let p += l be primes ofL . ThenΨ has good reduction
at p if and only if the Galois module Ψ [l∞] := ⋃

n"1 Ψ [ln] is unramified at p. If Ψ has rank 1, then Ψ [l∞] is
totally ramified at l.

Note that the last assertion is not stated explicitly in the theorem cited, but can be derived from
its proof.

2.1.2. Algebraic properties
In this subsection, we restrict our attention to Drinfeld A-modules ψ over k. Moreover, for the

result on the degree of the division fields (Proposition 5), we shall make an additional assumption on
the endomorphism ring of ψ .

Proposition 3 (Size of constant field). (See [Go, Remark 7.1.9, p. 196].) Let ψ ∈ DrinA(k), and let

kψ,tors :=
⋃

d∈A\{0}
k
(
ψ[d]

)
.

Then

[kψ,tors ∩ Fq : Fq] < ∞.

In particular, there exists a positive constant C(ψ), depending on ψ , such that, for any d ∈ A\Fq,

cd ! C(ψ),

where, we recall, cd := [k(ψ[d]) ∩ Fq : Fq].

Proposition 4 (Growth of genus). (See [Ga, Corollary 7, p. 248].) Let ψ ∈ DrinA(k). Then there exists a positive
constant G(ψ), depending on ψ , such that, for any d ∈ A\Fq, the genus gd of k(ψ[d]) satisfies

gd ! G(ψ) ·
[
k
(
ψ[d]

)
: k

]
· degd.
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Proposition 5 (Size of degree). Let ψ ∈ DrinA(k) of rank r " 2. Assume that Endk(ψ) is the maximal A-order
in an imaginary Galois extension k′ of k satisfying [k′ : k] = r. Then, for any non-zero d ∈ A,

[
k
(
ψ[d]

)
: k

]
/k′

qr degd

log(r degd) + log logq
.

Proof. This is, essentially, a consequence of the important work of David Hayes, more precisely of
[Ha, Theorem 9.2, p. 206], as we explain below.

First, we recall:

Proposition 6. Let ψ ∈ DrinA(k) of rank r " 2. Assume that A := Endk(ψ) is the maximal A-order in an
imaginary Galois extension k′ of k satisfying [k′ : k] = r. Then there exists a Drinfeld A -module ψ ′ over k, of
generic A -characteristic, such that:

(i) ψ ′ has rank 1;
(ii) ψ ′

d = ψd for all non-zero d ∈ A.

Part (ii) is [Ha, Prop. 3.2, p. 182] and part (i) is derived by comparing the size of the division
modules ψ ′[d],ψ[d], equality coming from part (ii). We include more details below.

Proof of Proposition 6. Since A ⊆ A ⊆ k{τ }, we have the commutative diagram

A
ψ

k{τ } k{τ }

A

ψ ′ (by definition)

As shown above, we define ψ ′ to be the low right-hand map and claim that it is a Drinfeld A -module
over k, of generic characteristic, satisfying (i) and (ii).

To see this, observe first that A ⊆ k, hence k is naturally a field with generic A -characteristic. We
also observe that, by its definition, ψ ′ is an Fq-algebra for which the differentiation with respect to x
map,

D : k{τ } −→ k, D
( ∑

0!i!n

ciτ
i
)

= c0,

satisfies D(ψ ′
d) = d for any d ∈ A. Moreover, since A ! A , ψ ′ satisfies Imψ ′ " k. Hence, indeed, ψ ′ is

a generic Drinfeld A -module over k.
From the definition of ψ ′ , property (ii) is immediate. It remains to prove (i), that is, that the rank r′

of ψ ′ is 1. For this, let d ∈ A be non-zero. By classical theory,

ψ ′[d] 1A (A /dA )r
′

(10)

and

ψ[d] 1A (A/dA)r . (11)

By our assumption on A , we have

A 1A Ar . (12)
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Putting together (10)–(12) and using (ii), we deduce that r′ = 1. This completes the proof of Proposi-
tion 6. !

Continuing the preparation for the proof of Proposition 5, we next recall:

Proposition 7. (See [Ha, Theorem 9.2, p. 206].) Let K be an arbitrary function field, ∞ a fixed prime of K ,
A the ring of functions on K regular away from ∞, and (L , δ) an A -field. Denote by HK the Hilbert class
field of K with respect to A , that is, the maximal abelian extension of K , unramified everywhere and split
completely at ∞. The following statements hold:

(i) HK /K is a finite Galois extension with

Gal(HK /K ) 1 Pic(A ),

the Picard group of A , that is, the group of classes of degree zero divisors of K supported away from A ,
modulo principal divisors.

(ii) Let Ψ ∈ DrinA (L ) of rank 1 and of generic A -characteristic. Then, for any non-zero d ∈ A ,

Gal
(
HK

(
Ψ [d]

)
/HK

)
1 (A /dA )∗.

We are now ready to prove Proposition 5. For this, let ψ ∈ DrinA(k) be of rank r " 2 and as-
sume that A := Endk(ψ) is the maximal A-order in an imaginary Galois extension k′ of k satisfying
[k′ : k] = r. By Proposition 6, there exists a generic Drinfeld A -module ψ ′ over k, of rank 1, such that
ψ ′

d = ψd for all non-zero d ∈ A.
Let d ∈ A\{0} be fixed. Then the Hilbert class field Hk′ of k′ satisfies

Hk′ ∩ k′(ψ ′[d]
)
= k′. (13)

This follows from the ramification properties of the fields involved: by definition, Hk′ is unramified
everywhere, while, by Proposition 2, k′(ψ ′[d]) is totally ramified at the primes dividing d.

Using (13) and Proposition 7, we obtain the following field diagram:

Hk′(ψ ′[d])

Hk′

#(A /dA )∗

k′(ψ ′[d])

#Pic(A )

k′
#Pic(A )

#(A /dA )∗

k(ψ ′[d])

k′ ∩ k(ψ ′[d])

#(A /dA )∗

k

We immediately deduce that

[
k
(
ψ ′[d]

)
: k

]
= #(A /dA )∗ ·

[
k′ ∩ k

(
ψ ′[d]

)
: k

]
∈

{
n#(A /dA )∗: n ∈ N\{0},n|r

}
,
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and, recalling part (ii) of Proposition 6, that

[
k
(
ψ[d]

)
: k

]
∈

{
n#(A /dA )∗: n ∈ N\{0},n|r

}
. (14)

Finally, by invoking [Br, Lemma 2.2, p. 1243] and our assumption on A (in particular, that we
work with a Dedekind domain satisfying (12)), we deduce that

#(A /dA )∗ = #GL1(A /dA ) /k′
qr degd

log logqr degd
. (15)

By putting together (14) and (15), we complete the proof of Proposition 5. !

2.1.3. Arithmetic in division fields
In this subsection, let ψ ∈ DrinA(k) be of rank r " 1, and let Pψ be the set of primes of good

reduction for ψ .
For p ∈ Pψ , by the torsion theory of ψ ⊗ Fp , there exist uniquely determined monic polynomials

m1(ψ,p), . . . ,mr(ψ,p) ∈ A(1) such that

m1(ψ,p)| . . . |mr(ψ,p)

and

ψ(Fp) 1A A/m1(ψ,p)A × · · · × A/mr(ψ,p)A. (16)

We define the Euler–Poincaré characteristic of ψ(Fp) as the principal ideal

χ
(
ψ(Fp)

)
:=m1(ψ,p) . . .mr(ψ,p)A

and note that

∣∣χ
(
ψ(Fp)

)∣∣
∞ = |p|∞. (17)

For l = 'A a prime of k, let

T l(ψ) := HomAl

(
kl/Al,ψ

[
'∞])

,

V l(ψ) := Tl(ψ) ⊗Al kl

be the l-adic Tate module and the l-adic Tate algebra, respectively, of ψ , where, as usual, Al and kl

are the completions of A and k at l.
By the torsion theory of ψ ,

Tl(ψ) 1Al Ar
l,

V l(ψ) 1kl k
r
l.

Moreover, the absolute Galois group Gk := Gal(ksep/k) of k acts continuously on these structures,
giving rise to continuous Galois representations

ρψ,l : Gk −→ AutAl

(
T l(ψ)

)
1 GLr(Al),

ρψ,l ⊗ kl : Gk −→ Autkl

(
V l(ψ)

)
1 GLr(kl).
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For the purpose of our paper, these two aspects of the theory of ψ (reductions and Galois rep-
resentations) are related through the important properties of the characteristic polynomial of the
Frobenius σp at p,

P l
ψ,p(X) := det

(
X Id− ρψ,l(σp)

)

= Xr + ar−1(ψ,p)Xr−1 + · · · + a1(ψ,p)X + a0(ψ,p) ∈ Al[X],

as will be discussed below.
We recall the basic properties of this polynomial:

Proposition 8. (See [Ge, Corollary 3.4, p. 193; Theorem 5.1, p. 199].) Let ψ ∈ DrinA(k) of rank r " 1. Let
p = pA ∈Pψ and l be primes of k such that l += p. Then:

(i) P l
ψ,p(X) ∈ A[x]; in particular, P l

ψ,p(X) is independent of l, and, as such, we will drop the superscript l

from notation and simply write Pψ,p(X).
(ii) a0(ψ,p) = u(ψ,p)p for some u(ψ,p) ∈ F∗

q .
(iii) The roots of Pψ,p(X) have | · |∞-norm less than or equal to |p|

1
r∞ .

(iv) |ai(ψ,p)|∞ ! |p|
r−i
r∞ for all 0 ! i ! r − 1.

(v) Pψ,p(1)A = χ(ψ(Fp)).

Next we focus on characterizing the primes splitting completely in a division field of ψ . We start
with:

Proposition 9. Let ψ ∈ DrinA(k) of rank r " 1. Let p = pA ∈Pψ and let d ∈ A\{0} be coprime to p. If p splits
completely in k(ψ[d]), then dr |Pψ,p(1).

Proof. Let p be as in the statement of the proposition. Since it splits completely in k(ψ[d]), σp acts
trivially on ψ[d], and so (ψ ⊗Fp)[d] !A Ker(πp −1), where πp is the |p|∞-power Frobenius of Fp . By
invoking the structure of the torsion of ψ ⊗ Fp , we deduce that ψ(Fp) contains an isomorphic copy
of (A/dA)r . By taking the Euler–Poincaré characteristic and by invoking part (v) of Proposition 8, we
then deduce the desired divisibility relation. !

We devote the rest of this subsection to proving one of the key ingredients of the proof of Theo-
rem 1:

Proposition 10 (Properties of primes splitting completely in division fields). Let ψ ∈ DrinA(k) of rank r " 2.
There exists ψ1 ∈ DrinA(k), of rank 1, uniquely determined up to k-isomorphism, such that:

(i) Pψ ⊆Pψ1 ;
(ii) for any p ∈Pψ , the characteristic polynomials of ψ and ψ1 at p satisfy the relation:

Pψ,p(X) = Xr + ar−1(ψ,p)Xr−1 + · · · + a1(ψ,p)X + u(ψ,p)p,

Pψ1,p(X) = X + (−1)r−1u(ψ,p)p,

where, we recall, u(ψ,p) ∈ F∗
q ;

(iii) for any p = pA ∈Pψ and any non-zero d ∈ A coprime to p we have that,
if p splits completely in k(ψ[d]), then
(iii1) p also splits completely in k(ψ1[d]);
(iii2) dr |Pψ,p(1);
(iii3) d|Pψ1,p(1).
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Proof. Let ψ ∈ DrinA(k) be defined by

ψT = T τ 0 + c1(ψ)τ + · · · + cr−1(ψ)τ r−1 + .(ψ)τ r ∈ k{τ }, (18)

where .(ψ) += 0.
Let ψ1 ∈ DrinA(k) be defined by

ψ1
T = T τ 0 + (−1)r−1.(ψ)τ . (19)

Using [He, Theorems 3.1 and 6.3], we obtain that, for any prime l of k, the Tate algebras of ψ and
ψ1 satisfy the Gk-isomorphism

V l
(
ψ1) 1Gk Λr V l(ψ). (20)

Thus, if the representation ρψ,l ⊗kl is unramified at some prime p, so is the representation ρψ1,l ⊗kl .
Using Proposition 2, we then deduce part (i) of the theorem.

Part (ii) is an immediate consequence of [HsYu, Theorem 3.2] and the relation between ψ and ψ1

exhibited in (18)–(19).
To prove part (iii), let p = pA ∈ Pψ and d ∈ A coprime to p be such that p splits completely in

k(ψ[d]). Then the residual representation

ρψ,d : Gal
(
k
(
ψ[d]

)
/k

)
↪→ GLr(A/dA)

satisfies

ρψ,d(σp) = Id,

and so

Pψ,p(X) ≡ (X − 1)r (mod dA).

Using part (ii), we deduce that

Pψ1,p(X) ≡ X − 1 (mod dA);

recalling that ψ1 has rank 1, we deduce further that the residual representation

ρψ1,d : Gal
(
k
(
ψ1[d]

)
/k

)
↪→ GL1(A/dA)

satisfies

ρψ1,d(σp) = Id.

In other words, p splits completely in k(ψ1[d]), proving (iii1). Parts (iii2) and (iii3) are then immediate
applications of Proposition 9. !

By specializing to the case of a rank 2 Drinfeld module, we obtain:

Corollary 11. Let ψ ∈ DrinA(k) of rank 2. Let p = pA ∈ Pψ and d ∈ A non-zero, coprime to p. If p splits
completely in k(ψ[d]), then either of the roots πψ,p ∈ k of Pψ,p has the property that

πψ,p − 1
d

is an algebraic integer.
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Proof. Let πψ,p ∈ k be the Galois conjugate of πψ,p . We consider the polynomial

(
X − πψ,p − 1

d

)(
X − πψ,p − 1

d

)
= X2 + a1(ψ,p) + 2

d
X + Pψ,p(1)

d2
∈ k[X]

and show that it has coefficients in A.
Since p splits completely in k(ψ[d]), parts (ii)–(iii) of Proposition 10 give d2|Pψ,p(1) = 1 +

a1(ψ,p) + u(ψ,p)p and d|Pψ1,p(1) = 1 − u(ψ,p)p, and so also d|a1(ψ,p) + 2. This completes the
proof. !

2.2. Reduction types

Let ψ ∈ DrinA(k) of rank 2. We recall that a prime p ∈Pψ is called supersingular if EndFp
(ψ ⊗Fp)

has rank 4, and is called ordinary if EndFp
(ψ ⊗ Fp) has rank 2, these being the only possibilities.

Here, Fp is an algebraic closure of Fp .
As in the previous section, let

Pψ,p(X) = X2 + a1(ψ,p)X + u(ψ,p)p ∈ A[X]

= (X − πψ,p)(X − πψ,p) ∈ k[X]

be the characteristic polynomial of ψ at p, where u(ψ,p) ∈ F∗
q .

Proposition 12. Let ψ ∈ DrinA(k) be of rank 2 and let p ∈Pψ .

(i) If p is supersingular, then a1(ψ,p) = 0, i.e.

Pψ,p(X) = X2 + u(ψ,p)p.

(ii) If p is ordinary and Endk(ψ) is non-trivial, then

k(πψ,p) 1 Endk(ψ) ⊗A k.

Proof. (i) Assume that p = pA is supersingular. By classical theory, this is equivalent to p|a1(ψ,p).
Provided a1(ψ,p) += 0, we obtain that deg p ! dega1(ψ,p). On the other hand, by part (iv) of Propo-
sition 8, dega1(ψ,p) ! deg p

2 , leading to a contradiction. This shows that a1(ψ,p) = 0.
(ii) Let p = pA ∈ Pψ be ordinary. Then, by classical theory (see, in particular, [Yu]), k(πψ,p) is an

imaginary quadratic extension of k, satisfying

k ! k(πψ,p) = EndFp(ψ ⊗ Fp) ⊗A k ⊆ EndFp
(ψ ⊗ Fp) ⊗A k,

with the latter a rank 2 k-algebra, since p is ordinary.
On the other hand,

Endk(ψ) ⊗A k ⊆ EndFp
(ψ ⊗ Fp) ⊗A k,

with the former also a rank 2 k-algebra, from our hypothesis on ψ . By putting everything together,
we obtain the desired isomorphism. !
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2.3. The Chebotarev Density Theorem

Let K be a finite Galois extension of k. In this section, we recall an effective version of the Cheb-
otarev Density Theorem for K/k proven in [MuSc], and apply it in the context of division fields of
Drinfeld modules.

Let gK be the genus of K and let cK denote the degree of the constant field of K , that is,

cK := [K ∩ Fq : Fq].

Let

D :=
∑

p ramified in K/k

degp.

For x ∈ N\{0}, define

Π(x; K/k) := #{p unramified in K/k: degp = x},

and for C ⊆ Gal(K/k) a conjugacy class, define

ΠC (x; K/k) := #{p unramified in K/k: degp = x, σp = C},

where σp is the Frobenius at p in K/k. In particular,

Π1(x; K/k)

defines the number of primes of k, of degree x, which split completely in K . Define aC ∈ N by the
property that the restriction to K ∩ Fq of C is τ aC .

Theorem 13. (See [MuSc, Theorem 1, p. 524].) We keep the above setting and notation.

(i) If x +≡ aC (mod cK ), then ΠC (x; K/k) = 0.
(ii) If x ≡ aC (mod cK ), then

∣∣∣∣ΠC (x; K/k) − cK
|C |

[K : k]Π(x; K/k)

∣∣∣∣ ! 2gK
|C |

[K : k]
q

x
2

x
+ 6|C |q

x
2

x
+

(
1+ |C |

x

)
D.

The application of Theorem 13 relevant to us is when K is a division field of ψ ∈ DrinA(k) and
C = {1}. Here is a restatement of this theorem in our desired setting:

Theorem 14. Let ψ ∈ DrinA(k) of rank r " 1. Let d ∈ A\Fq. Then, for any positive integer x, we have

Π1
(
x;k

(
ψ[d]

)
/k

)
= cd(x)

[k(ψ[d]) : k] · q
x

x
+ Oψ

(
q

x
2

x
degd

)
,

where cd(x) is defined in (8).

Proof. Using the effective Prime Number Theorem for k and Theorem 13 with K = k(ψ[d]), C = {1},
and hence aC = 0, we obtain

Π1
(
x;k

(
ψ[d]

)
/k

)
= cd(x)

[k(ψ[d]) : k] · q
x

x
+O

((
2gd · 1

[k(ψ[d]) : k] + 6
)

· q
x
2

x
+

(
1+ 1

x

)
D

)
,
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where

D :=
∑

p ramified in k(ψ[d])/k
degp.

By Proposition 2, D $ψ degd. Combining this with Proposition 4, we deduce that

(
2gd · 1

[k(ψ[d]) : k] + 6
)

· q
x
2

x
+

(
1+ 1

x

)
D $ψ

q
x
2

x
· degd,

completing the proof. !

3. Proof of Theorem 1

Let ψ ∈ DrinA(k) be of rank 2 and such that A := Endk(ψ) is the full ring of integers in an
imaginary quadratic extension k′ of k. We keep all the associated notation introduced in the previous
sections.

Let x be a fixed positive integer, to be thought of as large (approaching infinity). The goal of the
theorem is to obtain an effective asymptotic formula for

S (ψ, x) :=
∑

m∈A(1)

Π1
(
x;k

(
ψ[m]

)
/k

)
,

with an optimal error term.
By Proposition 10, for any prime p ∈ Pψ which splits completely in some k(ψ[m]) we have

m2|Pψ,p(1). Using part (v) of Proposition 8 and (17), this implies that degm ! degp
2 . In other words,

the range of m ∈ A(1) in the definition of S (ψ, x) restricts to

S (ψ, x) =
∑

m∈A(1)

degm! x
2

Π1
(
x;k

(
ψ[m]

)
/k

)
.

To evaluate the sum, we split the range of m into

S (ψ, x) =
∑

m∈A(1)

degm!y

Π1
(
x;k

(
ψ[m]

)
/k

)
+

∑

m∈A(1)

y<degm! x
2

Π1
(
x;k

(
ψ[m]

)
/k

)

=: S1(ψ, x, y) + S2(ψ, x, y) (21)

for some y = y(x) " 1, to be chosen optimally later, and we apply the effective Chebotarev Density
Theorem when degm ! y. When y < degm ! x

2 , we use adhoc methods to obtain a satisfactory upper
bound. The details follow.

A direct application of Theorem 14 and of the elementary estimate

∑

m∈A(1)

degm!y

degm ! y
qy+1 − 1
q − 1
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yields

S1(ψ, x, y) =
( ∑

m∈A(1)

degm!y

cm(x)
[k(ψ[m]) : k]

)
qx

x
+Oψ

(
q

x
2+y). (22)

To estimate S2(ψ, x, y), we make use of our assumptions on ψ . More specifically, we make use of
Corollary 11 and Proposition 12, as follows.

Since ψ has rank 2, we can write

S2(ψ, x, y) = S ss
2 (ψ, x, y) + S o

2 (ψ, x, y), (23)

where

S ss
2 (ψ, x, y) :=

∑

m∈A(1)

y<degm! x
2

#
{
p: degp = x, p splits completely in k

(
ψ[m]

)
/k,

p supersingular for ψ
}
,

S o
2 (ψ, x, y) :=

∑

m∈A(1)

y<degm! x
2

#
{
p: degp = x, p splits completely in k

(
ψ[m]

)
/k, p ordinary for ψ

}
.

To estimate S ss
2 (ψ, x, y), let p ∈ Pψ be supersingular and split completely in k(ψ[m]) for some

m ∈ A(1) with y < degm ! x
2 . Using Proposition 9 and part (i) of Proposition 12, we obtain

m2|Pψ,p(1) = 1+ u(ψ,p)p.

At the same time, using parts (ii) and (iii) of Proposition 10, we obtain

m|Pψ1,p(1) = 1 − u(ψ,p)p.

Combining the two, we obtain

m|2.

Since degm " y " 1, we reach a contradiction. Consequently,

S ss
2 (ψ, x, y) = 0. (24)

To estimate S o
2 (ψ, x, y), let p ∈Pψ be ordinary and split completely in k(ψ[m]) for some m ∈ A(1)

with y < degm ! x
2 . Using our assumptions on k and Endk(ψ), we write

Endk(ψ) = A + A
√

f (T ),

and so

k′ = k
(√

f (T )
)
,

for some squarefree polynomial f ∈ A of odd degree, or of even degree and with leading coefficient
not a square in F∗

q (see, for example, [Ro, p. 248]).
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Using Corollary 11 and part (ii) of Proposition 12, we deduce that

πψ,p − 1
m

= d1 + d2
√

f

for some d1,d2 ∈ A, and so

Nk′/k(πψ,p) = Nk′/k
(
(1+md1) +md2

√
f
)

for some d1,d2 ∈ A. Recalling part (ii) of Proposition 8, this gives

u(ψ,p)p = (1+md1)2 − f (md2)2

for some u(ψ,p) ∈ F∗
q and d1,d2 ∈ A. Therefore

S o
2 (ψ, x, y) !

∑

m∈A(1)

y<degm! x
2

#
{
(d1,d2) ∈ A × A: deg

(
(1 +md1)2 − f (md2)2

)
= x

}
.

To estimate the size of the set inside the sum above, we use the aforementioned properties of f
to infer that

deg
(
(1+md1)2 − f (md2)2

)
= max

{
deg(1+md1)2,deg

(
f (md2)2

)}
.

Consequently,

#
{
(d1,d2) ∈ A × A: deg

(
(1 +md1)2 − f (md2)2

)
= x

}

! #
{
d1 ∈ A: degd1 ! x

2
− degm

}
· #

{
d2 ∈ A: degd2 ! x

2
− deg f

2
− degm

}

= qx−
deg f
2 −2degm+2,

and so

S o
2 (ψ, x, y) !

∑

m∈A(1)

y<degm! x
2

qx−
deg f
2 −2degm+2

= qx−
deg f
2 +2 · q

−(y+1) − q−( x
2+1)

1− q−1

! qx−y · q
2− deg f

2

1− q−1 . (25)

Putting together (21), (22), (23), (24), (25), we obtain

S (ψ, x) =
( ∑

m∈A(1)

degm!y

cm(x)
[k(ψ[m]) : k]

)
qx

x
+Oψ

(
q

x
2+y) +Oψ

(
qx−y).
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Upon choosing

y := x
4
,

we obtain further that

S (ψ, x) =
( ∑

m∈A(1)

degm!y

cm(x)
[k(ψ[m]) : k]

)
qx

x
+ Oψ

(
q

3x
4
)
. (26)

To estimate the tail

∑

m∈A(1)

degm" x
4

cm(x)
[k(ψ[m]) : k] ,

we use Propositions 3 and 5, as well as elementary estimates. We obtain

∑

m∈A(1)

degm" x
4

cm(x)
[k(ψ[m]) : k] $ψ

∑

m∈A(1)

degm" x
4

log(2degm) + log logq
q2degm

$ log x

q
x
4+1 logq

.

Plugging this in (26), we deduce

S (ψ, x) =
( ∑

m∈A(1)

cm(x)
[k(ψ[m]) : k]

)
qx

x
+Oψ

(
q

3x
4 log x

)
,

completing the proof of Theorem 1.
To prove (9), we start with the key remark that the A-module ψ(Fp) contains a copy of (A/mA)2

if and only if p splits completely in k(ψ[m]) (by arguing as in the proof of Proposition 9, emphasizing
the two-way implications). Therefore, keeping in mind the A-module structure of ψ(Fp) described
in (16) and using the inclusion–exclusion formula, we obtain that

#
{
p ∈ A(1): deg p = x, ψ(Fp) is A-cyclic

}

= #
{
p ∈ A(1): deg p = x, pA does not split completely in k

(
ψ[']

)
/k for any ' ∈ A(1)}

=
∑

m∈A(1)

µA(m)Π1
(
x,k

(
ψ[m]

)
/k

)
,

where, we recall, µA(·) is the Möbius function of A. This sum is now estimated, asymptotically,
exactly as S (ψ, x), leading to (9).
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