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On the Surjectivity of the Galois
Representations Associated to Non-CM
Elliptic Curves

Alina Carmen Cojocaru

with an Appendix by Ernst Kani

Abstract. Let E be an elliptic curve defined over Q , of conductor N and without complex multiplica-
tion. For any positive integer l, let φl be the Galois representation associated to the l-division points
of E. From a celebrated 1972 result of Serre we know that φl is surjective for any sufficiently large
prime l. In this paper we find conditional and unconditional upper bounds in terms of N for the
primes l for which φl is not surjective.

1 Introduction

Let E be an elliptic curve defined over Q and of conductor N . For primes p of good
reduction for E, that is, primes p ! N , let Ep be the reduction of E modulo p and write

|Ep(Fp)| = p + 1 − ap

for the number of Fp-rational points of Ep. We know from Hasse’s inequality that

(1) |ap| ≤ 2
√

p.

For a positive integer k, let E[k] denote the group of complex points on E whose order
divides k, called the group of k-division points of E, and let Lk = Q(E[k]) be the field
obtained by adjoining to Q the x- and y-coordinates of the points in E[k], called the
k-division field of E. We know that E[k] is isomorphic to Z/kZ×Z/kZ and that Lk/Q

is a finite Galois extension which is unramified outside kN (see [Si86]).
There has been great interest in determining the size of the degree [Lk : Q] of the

extensions Lk/Q. For example, this problem has applications in the study of certain
diophantine equations (see [Mer]) or in the study of the curve Ep as p varies (see
[Co]).

A natural way of finding upper bounds for [Lk : Q] is by observing that the ab-
solute Galois group Gal(Q/Q), where Q is an algebraic closure of Q , acts on the
k-division points E[k] for any k. This allows us to define a representation

φk : Gal(Lk/Q) −→ GL2(Z/kZ),
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On the Surjectivity of the Galois Representations 17

called the Galois representation associated to E[k]. It is easy to see that φk is injective.
Therefore for any k we have

[Lk : Q] ≤ |GL2(Z/kZ)| = k4
∏

l|k
l prime

(

1 − l−2
) (

1 − l−4
)

.

Determining the size of the image of φk is a much more challenging question.
By classical results in the theory of complex multiplication, we know that if E has
complex multiplication (denoted CM), then

φ(k)2 & [Lk : Q] & k2

for any k > 2, where φ( · ) denotes the Euler function. Thus φk cannot be surjective
in this case. In big contrast, if E does not have complex multiplication (denoted non-
CM), a celebrated result of J.-P. Serre [Se72] asserts that there exists a finite set of
primes SE such that φl is surjective for any prime l '∈ SE. Moreover, if we define

A(E) := 2 · 3 · 5 ·
∏

l∈SE

l,

we can deduce that φk is surjective for any positive integer k coprime to A(E) (see the
Appendix of this paper). We will refer to A(E) as Serre’s constant associated to E.

Now a natural question to ask is how large the prime divisors of A(E) can be. In
his 1972 paper, and also later in a 1981 paper, J.-P. Serre asked if A(E) is an absolute
constant for any non-CM elliptic curve E defined over Q (see [Se72, p. 299] and
[Se81, p. 199]). In 1978 [Maz], B. Mazur showed that A(E) is indeed an absolute
constant if E is a semistable elliptic curve, that is, if the conductor N of E is square-
free.

In this paper we consider the more modest problem of finding upper bounds for
the prime divisors of A(E) in terms of the conductor N of E.

One approach to this problem was initiated by J.-P. Serre in 1981; we recall it in
what follows. In [Se81, p. 197] Serre showed that if l is a prime and if we let Gl

denote the image of φl in GL2(Z/lZ) and PGl the image of Gl in the projective group
PGL2(Z/lZ) := GL2(Z/lZ)/(Z/lZ)∗, then, in order to prove that Gl = GL2(Z/lZ), it
suffices to show that:

• PGl is not contained in a Borel subgroup of PGL2(Z/lZ);
• PGl is not contained in a non-split Cartan subgroup of PGL2(Z/lZ);
• PGl is not isomorphic to the permutation groups A4, S4 or A5;
• PGl is not contained in the normalizer Nl of a Cartan subgroup Cl of PGL2(Z/lZ)

such that PGl " Cl.

(For the definitions of the Borel and Cartan subgroups of PGL2(Z/lZ) the reader may
consult [Se72, Section 2, p. 278] or [La, Sections 1–2 of Ch. XI]). Serre showed that
the first three situations above hold if l ≥ 19 and l '= 37 (see [Se81, Lemmas 16–18]).
If there exists a Cartan subgroup Cl of PGL2(Z/lZ) such that PGl is contained in the
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normalizer Nl of Cl in PGL2(Z/lZ) and is not contained in Cl, then we identify Nl/Cl

with the group {±1} and we let εl be the composition

Gal(Q/Q) −→ Gl −→
Nl

Cl
−→ {±1}.

We see that εl is a quadratic character of Gal
(

Q/Q
)

, which we identify with a Dirich-
let character. Serre [Se72, p. 317] showed that

(2) εl is unramified at the primes p which do not divide N,

and

(3) ap ≡ 0(mod l) for any prime p ! N such that εl(p) = −1.

In other words, if l is a prime divisor of A(E), then either l |37
∏

q≤19,q prime q or (3)
holds.

Now let p0 be the smallest prime p of good reduction for E such that εl(p) = −1
and ap '= 0. Serre proved that if we assume GRH for the Dedekind zeta functions of
the division fields of E, there exists a positive absolute constant c0 such that

(4) p0 ≤ c0(log N)2(log log(2N))6

(see [Se81, proof of Lemma 19]). By (1) and (4) we then get the estimate

A(E) ≤ 37

(

∏

q≤19
q prime

q

)

∏

l|ap0

1 prime
(l,37

∏

q≤19
q)=1

l

≤ 37

(

∏

q≤19
q prime

q

)

|ap0
| ≤ c1(log N)(log log(2N))3

for some positive absolute constant c1. We record this result as:

Theorem 1 Let E be a non-CM elliptic curve defined over Q and of conductor N.
Let A(E) be Serre’s constant associated to E. If we assume GRH for the Dedekind zeta
functions of the division fields of E, there exists a positive absolute constant c1 such that

A(E) ≤ c1(log N)(log log(2N))3.

Another approach to the problem of finding upper bounds for the prime divisors
of A(E) is due to D. W. Masser and G. Wüstholz (see [MaWü, p. 247]) who showed
that there exist absolute positive constants c2 and γ, with γ effective, such that φl is
surjective for any prime l satisfying

(5) l > c2 h(E)γ,
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where h(E) denotes the Faltings height of E (for a definition, we refer the reader to
[Si84, p. 254]). We will refer to γ as the Masser-Wüstholz constant.

In this paper we will first derive an unconditional upper bound for A(E). After
obtaining this estimate, we discovered that A. Kraus had already obtained a similar
result a few years earlier (see [Kr]). The proof we give is conceptually the same as the
one by Kraus but much simpler in that it is essentially self-contained; for example,
Kraus uses certain theorems of Deligne [De] without proof. We will also derive a con-
ditional upper bound for the prime divisors of A(E) based on a different hypothesis
than GRH.

Before stating the precise results that we are proving in this paper, let us point out
that one of the key facts used in our proofs is the modularity of elliptic curves defined
over Q , a long-standing conjecture formulated by Shimura and Taniyama, eventually
proven by Wiles, Taylor, and Wiles and Breuil, Conrad, Diamond, and Taylor. One
formulation of this conjecture is that for any elliptic curve E defined over Q and of
conductor N , there exists a non-trivial surjective morphism

φ : X0(N) −→ E,

defined over Q , called a modular parametrization of E. Here X0(N) is the modular
curve obtained by the action of the complex upper-half plane on the matrix subgroup
of SL2(Z) composed of elements whose left lower entry is 0 modulo N .

The main results of our paper are as follows.

Theorem 2 Let E be a non-CM elliptic curve defined over Q and of conductor N.
Then, for any prime l satisfying the inequality

l ≥
4
√

6

3
N

∏

p|N
p prime

(

1 +
1

p

) 1/2

+ 1,

the Galois representation φl associated to E is surjective. Moreover,

A(E) & N(log log N)1/2,

where the implied &-constant is absolute.

Theorem 3 Let E be a non-CM elliptic curve defined over Q and of conductor N. Let
φ be a modular parametrization for E of minimal degree deg φ. Assuming the degree
conjecture for φ, that is, assuming that for any ε > 0,

deg φ = Oε

(

N2+ε
)

,

there exists an absolute positive constant c3 such that, for any prime l satisfying the
inequality

l ≥ c3(log N)γ,

with γ denoting the Masser-Wüstholz constant, the Galois representation φl associated
to E is surjective.
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2 Preliminaries

In this section we review the properties of modular forms that will be needed for
proving the two results of the paper. For more details we refer the reader to [La].

Let k, N be positive integers and let

Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z) : c ≡ 0(mod N)

}

.

Also, let Mk(Γ0(N)) and Sk(Γ0(N)) be the complex vector spaces of modular forms
and cusp forms of weight k on Γ0(N), respectively.

On the space Sk(Γ0(N)) we can define an inner product, called the Petersson in-
ner product. We can also define certain linear transformations on Mk(Γ0(N)) and
Sk(Γ0(N)), called Hecke operators. A cusp form f which is an eigenform for all the
Hecke operators is called an eigenform; if its first Fourier coefficient a1( f ) is 1, then it
is called a normalized form. A nice property of an eigenform f is that its Fourier coef-
ficients an( f ) are multiplicative in n. Moreover, for any prime q ! N and any positive
integer t , the Fourier coefficients aqt ( f ) satisfy the recurrence relations

(6) aqt ( f )aq( f ) = aqt+1 ( f ) + qk−1aqt−1 .

A natural question to ask is: when are two modular forms equal? We have the
following answer:

Proposition 2.1 Let f and f ′ be two distinct modular forms of weight k and levels N
and N ′, respectively. Let M := lcm(N, N ′). Then there exists a positive integer n such
that

n ≤
k

12
M

∏

p|M
p prime

(

1 +
1

p

)

+ 1

and

an( f ) '= an( f ′),

where an( f ) and an( f ′) are the n-th Fourier coefficients of f and f ′.

Proof The following argument was given in [RM97]. We consider the function

φ :=

(

f − f ′
)12

∆k
,

where ∆ is the classical delta function defined by

∆(z) := e2πiz
∞
∏

n=1

(

1 − e2πinz
)24

.
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We recall that ∆ is a cusp form of weight 12 on SL2(Z) = Γ0(1), which is nonzero
on the complex upper-half plane and has a simple zero at infinity. Then φ is a mero-
morphic function on X0(M), for which we have

12m0 − k ≤ number of zeroes of φ

= number of poles of φ

≤ k([SL2(Z) : Γ0(M)] − 1)

= k
(

M
∏

p|M
p prime

(

1 +
1

p

)

− 1
)

,

with m0 denoting the order of the zero at infinity of f − f ′. Thus

m0 ≤
k

12
M

∏

p|M
p prime

(

1 +
1

p

)

.

This completes the proof of the proposition.

Another natural question to ask is how to generate new modular forms from a
given modular form. One way of answering this question is to associate to a given
f ∈ Mk(Γ0(N)) and a primitive Dirichlet character χ a function f̃ defined by

f̃ (z) :=
∞
∑

n=0

χ(n)an( f )e2πinz,

called the twist of f by χ, where

f (z) =

∞
∑

n=0

an( f )e2πinz

is the Fourier expansion of f . We have the following useful properties (for a proof,
see [Iw, p. 124]):

Proposition 2.2 The twist f̃ of a modular form f ∈ Mk(Γ0(N)) by a quadratic char-
acter χ of conductor r is a modular form in Mk(Γ0(M)), where M = lcm(N, r2). More-
over, if f is a cusp form, so is f̃ .

We can also generate new modular forms by remarking that if N ′|N , then a cusp
form f ∈ Sk(Γ0(N ′)) can be viewed as an element of Sk(Γ0(N)). More generally, if
δ| N

N ′ , we have that f (δz) ∈ Sk(Γ0(N)). The C-span of

⋃

N ′|N
N ′ '=N

⋃

δ| N
N ′

{ f (δz) : f ∈ Sk(Γ0(N ′))}
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is called the space of oldforms on Γ0(N). The eigenforms in the orthogonal comple-
ment (under the Petersson inner product) of the space of oldforms in Sk(Γ0(N)) are
called newforms.

We conclude our review with a few words on the modularity of the elliptic curves
defined over Q . The famous Shimura-Taniyama conjecture, now known to be true
(see [BCDT]), gives a one-to-one correspondence between isogeny classes of elliptic
curves defined over Q and of conductor N , and normalized newforms in S2(Γ0(N))
with integer Fourier coefficients. An equivalent formulation is as follows:

Theorem 2.3 (Shimura-Taniyama Conjecture) For every elliptic curve E defined over
Q and of conductor N there exists a surjective non-trivial morphism φ : X0(N) −→ E,
defined over Q .

Regarding the size of the degree of φ we have the following conjecture, unsolved for
the moment, formulated by G. Frey:

Conjecture 2.4 (Degree Conjecture) Let E be an elliptic curve defined over Q and of
conductor N, and let φ be a modular parametrization of E of minimal degree. Then, for
any ε > 0, we have deg φ = Oε

(

N2+ε
)

. Here, the Oε-constant depends only on ε.

3 Proof of Theorem 2

As mentioned in the Introduction, Serre showed that if l is a prime such that l ≥ 19
and l '= 37, then PGl cannot be contained in a Borel subgroup or a Cartan subgroup
of PGL2(Z/lZ), nor can it be isomorphic to the permutation groups A4, S4 or A5. In
what follows we will show that if

l ≥
4
√

6

3
N

∏

p|N
p prime

(

1 +
1

p

) 1/2

+ 1,

then PGl cannot be contained in the normalizer of a Cartan subgroup Cl of
PGL2(Z/lZ) such that PGl " Cl. This will imply that φl is surjective.

Let us suppose that there exists a Cartan subgroup Cl of PGL2(Z/lZ) such that
PGl is contained in the normalizer Nl of Cl in PGL2(Z/lZ) and is not contained in Cl.
As explained in the Introduction, this implies the existence of a Dirichlet quadratic
character εl satisfying (2) and (3). We also note that since εl is a quadratic character,
property (2) implies that the conductor D of εl is of the form D0 or 4D0 for some
square-free integer D0 such that D0|N.

We follow Serre’s idea of estimating l, that is, we first look for a prime q of good
reduction for E for which aq '= 0 and εl(q) = −1, and then we look for a non-trivial
upper bound for q. By (3) and Hasse’s bound (1) we obtain that l ≤ 2

√
q. Hence the

upper bound for q will give us an upper bound for l.
Let E ′ be the elliptic curve defined over Q and obtained by taking the twist of E

with respect to εl. We denote its conductor by N ′. Let f and f ′ be the weight 2 nor-
malized newforms with integer Fourier coefficients, of levels N and N ′, respectively,
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associated to E and E ′ via the Shimura-Taniyama Conjecture. Proposition 2.2 gives
us that N ′| lcm(N, D2). Thus the primes of bad reduction for E ′ are divisors of 2N ,
and so

(7) a ′
p = εl(p)ap for any prime p ! 2N,

where p + 1 − a ′
p denotes the number of Fp-rational points of the reduction of E ′

modulo p.
We want to prove that there exists a prime q which does not divide N and which

satisfies

aq '= a ′
q,(8)

εl(q) = −1,(9)

q ≤
8

3
N2

∏

p|N
p prime

(

1 +
1

p

)

+ 1.(10)

To do this, we first observe that f '= f ′, since E is a non-CM elliptic curve. Indeed,
if we assume that f = f ′, then by the definition of f ′ we must have ap = 0 for any
prime p such that εl(p) = −1. But, on one hand, by Dirichlet’s theorem, the number
of primes p ≤ x for which εl(p) = −1 is asymptotically equal to x

2 log x . On the other

hand, the number of primes p ≤ x for which ap = 0 is, in the case of a non-CM
elliptic curve, o( x

log x ) (see [Se81, Corollary 2]). Thus we are led to a contradiction.

Now we twist f and f ′ by a quadratic character which is zero only at the primes
dividing N , and obtain cusp forms

f̃ , f̃ ′ ∈ S2(Γ0(M))

with M|16N2 (see Proposition 2.2) and such that f̃ , f̃ ′ vanish at all the primes of bad
reduction for E. By the same argument as the one used for showing that f '= f ′, we
have f̃ '= f̃ ′. By Proposition 2.1 this last assertion implies that there exists a positive
integer n such that

(11) n ≤
1

6
M

∏

p|M
p prime

(

1 +
1

p

)

+ 1

and

(12) an

(

f̃
)

'= an

(

f̃ ′
)

,

where an( f̃ ) and an( f̃ ) are the n-th Fourier coefficients of f̃ and f̃ ′, respectively. In
particular, (12) tells us that we must have (n, N) = 1.

Using (11) and that f̃ and f̃ ′ are twists of f and f ′ by a quadratic character van-
ishing at the primes of bad reduction for E, we obtain that

an( f ) '= an( f ′)



24 A. C. Cojocaru

for some

n ≤
1

6
M

∏

p|M
p prime

(

1 +
1

p

)

+ 1 ≤
8

3
N2

∏

p|N
p prime

(

1 +
1

p

)

+ 1

with (n, N) = 1. Here, an( f ) and an( f ′) denote the n-th Fourier coefficients of f
and f ′.

Since f and f ′ are normalized newforms, the coefficients an( f ) and an( f ′) are
multiplicative in n, hence there exists a prime q|n such that

aqα( f ) '= aqα ( f ′),

with the power α such that qα‖n. Moreover, the recurrence relations (6) for aqt ( f )
and their analogues for aqt ( f ′), where t is an arbitrary positive integer, give us that

(13) aq = aq( f ) '= aq( f ′) = a ′
q.

Now we want to show that εl(q) = −1. Let us suppose that εl(q) '= −1. We notice
that εl(q) '= 0, since εl is unramified at the primes of good reduction for E and q is
such a prime. Then we must have εl(q) = 1, which implies

a ′
q = εl(q)aq = aq,

a contradiction with (13).
We have therefore proven that there exists a prime q of good reduction for E satis-

fying conditions (8), (9), (10). By (8) we deduce that aq '= 0, and by (10) and (3) we
deduce that l|aq. Using Hasse’s bound and (10) we obtain

l <
4
√

6

3
N

∏

p|N
p prime

(

1 +
1

p

) 1/2

+ 1,

which completes the proof of the first part of Theorem 2.
Let us remark that

(14) A(E) ≤ 37
(

∏

p≤19
p prime

p
)

|aq| & q1/2,

where q is the prime satisfying (8)–(10). We also recall from elementary number
theory that

(15)
∏

p|N
p prime

(

1 +
1

p

)

& log log N.

Combining (10), (14) and (15) gives the second assertion of Theorem 2. This com-
pletes the proof.
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4 Proof of Theorem 3

We recalled in the Introduction that for any prime l such that l > c2 h(E)γ , with h(E)
denoting the Faltings height of E and with c2 and γ as in (5), the representation φl is
surjective.

Now we want to relate h(E) to the conductor N of the elliptic curve E. To do so, we
let f ∈ S2(Γ0(N)) be the normalized newform associated to E and φ : X0(N) −→ E
be a minimal modular parametrization of E given by Theorem 2.3. As shown in
[RM99, pp. 181–182], we have that

2 h(E) + log〈 f , f 〉 = log deg φ + O(1),

and that for any ε > 0 and N sufficiently large,

(1 − ε) log N < log〈 f , f 〉 < (1 + ε) log N.

Here, 〈 · , · 〉 denotes the Petersson inner product and deg φ denotes the degree of φ.
We obtain

(1 − ε) log N + 2 h(E) < log deg φ + O(1) < (1 + ε) log N + 2 h(E).

By the degree conjecture for E, deg φ = Oε(N2+ε), hence

(16) h(E) & log N,

where the implied constant is absolute. We use (16) in (5) and deduce that there
exists an absolute positive constant c3 such that, for any prime l satisfying

l > c3(log N)γ (≥ c2 h(E)γ) ,

the representation φl is surjective. This completes the proof of Theorem 3.

5 Final Remarks

The bound provided by Theorem 3 is weaker than the bound (4) obtained by Serre by
assuming GRH, since the Masser-Wüstholz constant γ, even though effective, is not
yet determined (see [MaWü, p. 248]). On the other hand, the hypothesis of Theorem
3 is different, as illustrated in [RM99], where it is shown that the ABC conjecture is
equivalent to the degree conjecture for Frey curves.1 It will be interesting to find
the value of the Masser-Wüstholz constant γ, and consequently, to find the precise
estimate A(E) & Nb provided by Theorem 3. As shown in Theorem 2, we have
A(E) &ε N1+ε for any small positive ε. Currently, this is the best (unconditional)
estimate for A(E). We hope to address the problem of showing that A(E) & Nb for
some b < 1 in future research.
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1Using the “unconditional ABC” proven in [StYu], we obtain that for a non-CM Frey curve E of con-
ductor N, φl is surjective for any prime l " Nγ/3(log N)3.
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Appendix: The Surjectivity of mod m Galois Representations

by Ernst Kani

The aim of this appendix is to prove the following result.

Theorem 1 If E is an elliptic curve defined over Q and m is any integer with
(m, 30) = 1, then the Galois representation

ρE,m : Gal(Q/Q) → Aut(E[m]) . GL2(Z/mZ)

is surjective if and only if the Galois representations ρE,p are surjective for every prime
p|m. In particular, if E is a non-CM elliptic curve and A(E) is Serre’s constant associated
to E (see the definition in Section 1 of the paper), then ρE,m is surjective for every integer
m with (m, A(E)) = 1.

This theorem is essentially due to Serre and can be deduced from the Main Lemma
in his book [Se68, p. IV-19]. However, since this fact does not seem to be widely
known and since there is a small gap in his argument (similar to the gap which is
mentioned in his Collected Papers [Se85, p. 715]), it seems useful to present the fol-
lowing (modified) proof.

As in Serre’s book, the above assertion can be deduced from a purely group-
theoretical statement about subgroups of GL2(Z/mZ), which is perhaps also of in-
dependent interest. To state this result, we use the following notation introduced in
Serre [Se68, p. IV-25]

Notation For any finite group G, let Occ(G) denote the set of isomorphism classes
of non-abelian finite simple groups which occur as a composition factor of some
subgroup H ≤ G. Let p and q denote rational primes.

Theorem 2 Let G be a subgroup of GL2(Z/mZ) where (m, 30) = 1. Then:

(a) G = GL2(Z/mZ) if and only if G ≥ SL2(Z/mZ) and φ(m)|[G : G ′].
(b) G ≥ SL2(Z/mZ) if and only PSL2(p) ∈ Occ(G) for all primes p|m (here,

PSL2(p) := SL2(Z/pZ)/(±1)).

In order to prove this theorem, we first recall some basic facts about the matrix
groups SL2(Z/mZ).

The following (well-known) facts can be found in [Hu, Theorems II.6.13; II.8.14]:

Lemma 3 Let p and q be prime numbers. Then:

(a) PSL2(p) is a simple group for any p ≥ 5;
(b) PSL2(p) . PSL2(q) if and only if p = q;
(c) If H is a proper subgroup of PSL2(p), then H is solvable or H . A5;
(d) PSL2(p) . A5 if and only if p = 5.

Moreover, by Lemma 2 of [Se68, p. IV-23], we have
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Lemma 4 Let H be a subgroup of SL2(Z/pZ) such that ±H = SL2(Z/pZ). Then
H = SL2(Z/pZ).

Corollary 5 If p ≥ 5 is a prime, then the commutator subgroup SL2(Z/pZ) ′ of
SL2(Z/pZ) is SL2(Z/pZ) itself, i.e., SL2(Z/pZ) ′ = SL2(Z/pZ).

Proof Since PSL2(p) is non-abelian and simple (cf. Lemma 3(a)), we have

PSL2(p) ′ = PSL2(p)

and so ± SL2(Z/pZ) ′ = SL2(Z/pZ). Thus, the assertion follows from Lemma 4.

To extend the above result to SL2(Z/mZ) for an arbitrary integer m, let d|m be a
divisor of m and consider the (surjective) group homomorphism

prd = pr(m)
d : GL2(Z/mZ) −→ GL2(Z/dZ),

which is induced by reduction modulo d. We then have:

Lemma 6 Let H be a subgroup of SL2(Z/prZ), where p ≥ 5 is a prime and r is a
positive integer. If prp(H) = SL2(Z/pZ), then H = SL2(Z/prZ).

This result can be deduced from the proof of Lemma 3 of [Se68]. As pointed out in
[Se68], the result is false for p = 2 and p = 3. The above lemma has the following
consequences:

Corollary 7 For any integer m with (m, 6) = 1 we have that the commutator sub-
group SL2(Z/mZ) ′ is SL2(Z/mZ).

Proof Since SL2(Z/mZ) =
∏

pr||m SL2(Z/prZ), it is enough to verify this for a prime

power m = pr with p ≥ 5. In that case we can apply Lemma 6 to H = SL2(Z/prZ) ′

because by Corollary 5 we have prp(H) = prp(SL2(Z/prZ)) ′ = SL2(Z/pZ) ′ =

SL2(Z/pZ). Thus, by Lemma 6 we obtain that H = SL2(Z/prZ), as desired.

Corollary 8 Let m be a positive integer coprime to 6. If

SL2(Z/mZ) ≤ H ≤ GL2(Z/mZ),

then H ′ = SL2(Z/mZ). In particular, GL2(Z/mZ) ′ = SL2(Z/mZ).

Proof Since H/ SL2(Z/mZ) ≤ GL2(Z/mZ)/ SL2(Z/mZ) is abelian, we see that
H ′ ≤ SL2(Z/mZ). On the other hand, by Corollary 7 we also have that

SL2(Z/mZ) = SL2(Z/mZ) ′ ≤ H ′,

and so H ′ = SL2(Z/mZ).
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As we shall see below, part (a) of Theorem 2 follows readily from Corollary 8. We
therefore turn now to preliminary preparations for part (b). Here we first note:

Lemma 9 Let G be a finite group. Then:

(a) Occ(G) = ∅ if and only if G is solvable.
(b) If H is a normal subgroup of G, then Occ(G) = Occ(H) ∪ Occ(G/H).

Proof Let N(G) denote the set of isomorphism classes of non-abelian composition
factors of G, so that Occ(G) =

⋃

H≤G N(H).
(a) If Occ(G) = ∅, then also N(G) = ∅, and so by [Hu, I.11.9] G is solvable.

Conversely, if G is solvable, then so is any of its subgroups H ≤ G, and hence by [Hu,
I.11.9] again, we obtain that Occ(G) = ∅.

(b) From the definition it follows that N(G) = N(H) ∪ N(G/H), and so we see
that Occ(G) ⊇ Occ(H) ∪ Occ(G/H). For the reverse inclusion we let K ≤ G. Then
H ∩ K is a normal subgroup of K, and so N(K) = N(H ∩ K) ∪ N(K/(H ∩ K)) =

N(H ∩ K) ∪ N((HK)/K) ⊆ Occ(H) ∪ Occ(G/H), which yields the other inclusion.

We now use the above result to determine Occ(G) for our matrix groups.

Lemma 10 If m is a positive integer, then

(17) Occ(GL2(Z/mZ)) = Occ(SL2(Z/mZ)) =
⋃

p|m

Occ(PSL2(p)).

Moreover, if p ≥ 5 is a prime, then

(18) {PSL2(p)} ⊂ Occ(PSL2(p)) ⊂ {PSL2(p), A5} .

Proof Since (18) is just a restatement of parts (a) and (c) of Lemma 3, it is enough
to verify (17).

The first equality of (17) follows from Lemma 10 and from the fact that

GL2(Z/mZ)/SL2(Z/mZ)

is abelian. For the second equality we first note that Lemma 9(b) implies that

Occ(SL2(Z/mZ)) =
⋃

pr‖m

Occ(SL2(Z/prZ))

because SL2(Z/mZ) =
∏

pr‖m SL2(Z/prZ). Next we observe that

Occ(SL2(Z/prZ)) = Occ(SL2(Z/pZ))

because Ker(prp) is a p-group (and hence is solvable). Since clearly

Occ(SL2(Z/pZ)) = Occ(SL2(Z/pZ)/(±1)),

this proves the second equality of (17).
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Corollary 11 If p > 5 is a prime and m is an integer such that p ! m, then
PSL2(p) /∈ Occ(GL2(Z/mZ)).

Proof Since p > 5 we have by Lemma 3 that PSL2(p) '. A5 and that PSL2(p) '.
PSL2(q) for any prime q|m. Thus, the assertion follows from Lemma 10.

Lemma 12 Let G ≤ GL2(Z/prZ), where p ≥ 5 is a prime and r is a positive integer.
Then the following statements are equivalent:

(i) PSL2(p) ∈ Occ(G).
(ii) SL2(Z/prZ) ≤ G.
(iii) SL2(Z/pZ) ≤ prp(G).

Proof (ii) ⇒ (i). This is trivial, since PSL2(p) is a composition factor of SL2(Z/prZ).
(i) ⇒ (iii). Since prp(G) . G/H where H ≤ Ker(prp) is a p-group, we see by

Lemma 9 that Occ(G) = Occ(prp(G)).
Now for any subgroup K ≤ GL2(Z/pZ) we know by [La, Theorem XI.2.2] that

K ≥ SL2(Z/pZ) ⇔ p
∣

∣ |K| and K is not contained in a Borel subgroup.

Since the Borel subgroups of GL2(Z/pZ) are solvable, this therefore shows that the
condition PSL2(p) ∈ Occ(prp(G)) implies that prp(G) ≥ SL2(Z/pZ).

(iii) ⇒ (ii). Consider H := G ′ ≤ GL2(Z/prZ) ′ = SL2(Z/prZ) by Corollary 8.
Now since SL2(Z/pZ) ≤ prp(G) by hypothesis, we have SL2(Z/pZ) ′ ≤ prp(G) ′ =

prp(G ′) = prp(H) ≤ SL2(Z/pZ). But SL2(Z/pZ) ′ = SL2(Z/pZ) by Corollary 5, and
so SL2(Z/pZ) = prp(H). It therefore follows from Lemma 6 that

SL2(Z/prZ) = H = G ′ ≤ G,

and hence condition (ii) holds.

We are now ready to prove Theorem 2.

Proof of Theorem 2
(a) If G = GL2(Z/mZ), then clearly G ≥ SL2(Z/mZ). Moreover, by Corollary 8

we have

φ(m) = [GL2(Z/mZ) : SL2(Z/mZ)] = [GL2(Z/mZ) : GL2(Z/mZ) ′] = [G : G ′],

so in particular φ(m)|[G : G ′].
Conversely, if G ≥ SL2(Z/mZ) and φ(m)|[G : G ′], then

|GL2(Z/mZ)| = φ(m) |SL2(Z/mZ)|

is a divisor of [G : G ′] |SL2(Z/mZ)| = |G|, where the last equality follows from the
fact that G ′ = SL2(Z/mZ) by Corollary 8. Thus |GL2(Z/mZ)| divides |G|, and hence
G = GL2(Z/mZ).
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(b) If G ≥ SL2(Z/mZ), then G/ SL2(Z/mZ) is abelian and so

Occ(G) = Occ(SL2(Z/mZ)) ⊃ {PSL2(p) : p|m}

by Lemma 10.
Conversely, suppose that Occ(G) ⊃ {PSL2(p) : p|m}. For any prime p|m and any

subgroup H ≤ GL2(Z/mZ) let H(p) = H ∩ Ker(prm/pr ), where pr ‖ m. Note that

H(p) ! H is a normal subgroup of H and that

H(p) ≤ GL2(Z/mZ)(p) . GL2(Z/prZ).

We claim that PSL2(p) ∈ Occ(H(p)). Indeed, since H/H(p) . prm/pr (H), and since
PSL2(p) /∈ Occ(GL2(Z/ m

pr Z)) by Corollary 11 (using the fact that p > 5 by our

hypothesis), we have that PSL2(p) ∈ Occ(H(p)) by Lemma 9(b). Thus, by Lemma 12
(applied to GL2(Z/mZ)(p) . GL2(Z/prZ)) we see that SL2(Z/mZ)(p) ≤ H(p) because
SL2(Z/mZ)(p) . SL2(Z/prZ) (via the above isomorphism). Since this is true for all
p|m, we obtain

∏

p|m

SL2(Z/mZ)(p) ≤
∏

p|m

H(p) ≤ H.

But by the Chinese remainder theorem we have

GL2(Z/mZ) =
∏

p|m

GL2(Z/mZ)(p) and SL2(Z/mZ) =
∏

p|m

SL2(Z/mZ)(p)

(as subgroups of GL2(Z/mZ) ) and so we obtain SL2(Z/mZ) ≤ H, as desired. This
completes the proof of Theorem 2.

Remark Part (b) of this theorem is closely related to [Se68, Lemma 5]. However,
the proof of that lemma has a small gap, for it is not true (or clear) that the subgroup
H* (as defined on line 6) actually maps into SL2(F*) (as is asserted on line 13). Nev-
ertheless, the argument is easily repaired by the same argument as in the implication
(iii) ⇒ (ii) of Lemma 12.

Proof of Theorem 1 If ρE,m is surjective, then clearly so is ρE,p = pr(m)
p ◦ ρE,m for

every p|m.
Conversely, suppose ρE,p is surjective for all p|m. Then GL2(Z/pZ) is a quotient of

G := im(ρE,m) ≤ GLm(Z/mZ), and so PSL2(p) ∈ Occ(G), for every p|m and hence
G ≥ SL2(Z/mZ) by Theorem 2(b).

Moreover, since G . Gal(Q(E[m])/Q) and since Q(ζm) ⊂ Q(E[m]), we see that
φ(m)|[G : G ′]. Thus, by Theorem 2(a) we have that G = GL2(Z/mZ), i.e., that ρE,m

is surjective.
The last assertion is clear, for by definition A(E) = 30

∏

p∈SE
p, where SE is the set

of primes p such that ρE,p is not surjective.

Corollary 13 Let E/Q be a non-CM elliptic curve and let m be a positive integer
coprime to A(E). Then Q(ζm) is the maximal abelian extension of Q in Q(E[m]) and
Gal(Q(E[m])/Q) . GL2(Z/mZ).
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Proof Let G := Gal(Q(E[m])/Q) . im(ρE,m). By Theorem 1 we know that ρE,m

is surjective, so G . im(ρE,m) = GL2(Z/mZ). Thus, by Corollary 8 we have [G :
G ′] = φ(m) and so the maximal abelian extension in Q(E[m]) has degree φ(m).
Since Q(ζm) ⊂ Q(E[m]), the assertion follows.
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