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On the cyclicity of the group of Fp-rational points of
non-CM elliptic curves

Alina Carmen Cojocaru

ABSTRACT: Let E be an elliptic curve defined over Q and without complex multiplication.

For a prime p of good reduction, let E be the reduction of E modulo p. Assuming that certain
Dedekind zeta functions have no zeros in Re(s) > 3/4, we determine how often E(Fp) is a cyclic
group. This result was previously obtained by J. -P. Serre using the full Generalized Riemann

Hypothesis for the same Dedekind zeta functions considered by us.

1 Introduction

Let E be an elliptic curve defined over Q. For a prime p of good reduction we denote
by E the reduction of E modulo p. If the Mordell-Weil group of rational points E(Q)
of E has rank at least 1, and if we are given a rational point a on E, of infinite order,
then we can formulate an elliptic curve analogue of Artin’s problem on primitive roots,
as proposed by S. Lang and H. Trotter in [LT]. The analogue is as follows: fix a rational
point a on E of infinite order and determine the density of those primes p for which E
has good reduction and E(Fp) is cyclic and generated by a modulo p. In considering this
problem, we see that the implicit question of whether E(Fp) is cyclic is being asked. In
[Se2], J. -P. Serre showed that C. Hooley’s conditional method [Ho, ch. 3] of proving
Artin’s conjecture on primitive roots can be adapted to prove that the set of primes p
for which E(Fp) is cyclic has a density. Serre’s proof assumes the Generalized Riemann
Hypothesis (denoted GRH) for certain Dedekind zeta functions. More precisely, we have:

Theorem 1.1 (J. -P. Serre, 1976)
Let E be an elliptic curve defined over Q. For each prime q, let Lq := Q(E[q]), where

E[q] is the set of q−division points of E over Q. Let L1 := Q, and for each square-free
integer k, let Lk :=

∏

q|k Lq. Denote by f(x, Q) the number of primes p ≤ x such that

E has good reduction at p and E(Fp) is cyclic. Assuming GRH for the Dedekind zeta
functions of Lk, we have

f(x, Q) = CE lix + O

(

x log log x

(log x)2

)

,

where CE :=
∞

∑

k=1

µ(k)

[Lk : Q]
and lix =

∫ x

2
1

log t dt.
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As shown in [Mu4, p. 327], CE #= 0 whenever E has an irrational point of order 2. If
all the 2-division points are rational, then clearly E(Fp) is not cyclic for all primes p, for,
in this case, E(Fp) contains the Klein four group for p sufficiently large.

In 1980 [Mu1, p.161-167], Ram Murty removed GRH in the result above for elliptic
curves defined over Q and with complex multiplication. In 1987 [Mu3], he also demon-
strated unconditionally the existence of infinitely many primes p for which E(Fp) is cyclic
for certain elliptic curves defined over Q and without complex multiplication. In 1990
[GM1], Rajiv Gupta and Ram Murty proved unconditionally that for an elliptic curve E
defined over Q, the group E(Fp) is cyclic for infinitely many primes p if and only if E
has an irrational 2-division point. In the case E has an irrational 2-division point, they
obtained

#{p ≤ x, E has good reduction at p, E(Fp) is cyclic} $
x

log2 x
.

In this paper we will prove the following theorem:

Theorem 1.2 Let E/Q be an elliptic curve defined over Q and without complex multi-
plication. Using the same notation as in Theorem 1.1 and assuming that the Dedekind
zeta functions of all Lk do not vanish on Re(s) > 3/4, we have

f(x, Q) = CE lix + O

(

x log log x

(log x)2

)

.

In proving Theorem 1.2, we will be careful to isolate the precise steps where we need
to invoke the “quasi-Riemann Hypothesis” assumption. It turns out, as it will be seen
below, that if our goal is the assertion

f(x, Q) ∼ CE lix,

then the “quasi-Riemann Hypothesis” need only be invoked at one step, the other steps
being handled unconditionally.

The main tool used in the proofs of Theorems 1.1 and 1.2 is the Chebotarev density
theorem, which we recall now. Let L/Q be a finite Galois extension of degree nL and
with discriminant dL. For a positive real number x, let

π1(x, L/Q) := #{p ≤ x, p splits completely in L/Q }.

The Chebotarev density theorem asserts that

π1(x, L/Q) ∼
1

nL
li x.

Effective versions of this theorem were given by J. Lagarias and A. Odlyzko [LO] and are
as follows:

(a) there is an effective positive constant A and there is an absolute positive constant
c, such that if

√

log x

nL
≥ c max

(

log |dL|, |dL|1/nL
)

,
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then

π1(x, L/Q) =
1

nL
lix + O

(

x exp

(

−A

√

log x

nL

))

,

where the implied constant is absolute (see [Mu2, p. 243]);
(b) if we assume GRH for the Dedekind zeta function of L, then

π1(x, L/Q) =
1

nL
li x + O

(

x1/2

nL
log (|dL|xnL)

)

(see [Se3, p. 133]);
(c) if we assume that for the Dedekind zeta function of L we have a zero-free region

of Re(s) > δ, then

π1(x, L/Q) =
1

nL
lix + O

(

xδ

nL
log (|dL|xnL)

)

(this result is not in the literature, however it is clear that the methods of [LO] and [Se3]
can be used to deduce it).

In addition to the Chebotarev density theorem, we will use the Brun-Titchmarsh
theorem, which asserts that, given any integer q ≥ 1, any integer a coprime to q, and any
real number x with x > q, we have

π(x, q, a) ≤
2x

φ(q) log(x/q)
,

where π(x, q, a) denotes the number of primes p ≤ x which are congruent to a(mod q)
and φ(·) is the classical Euler function (see, for example, [Mu5, p.147]). We will also use
the elementary estimate

∑

q>y

1

qr+1
'

1

yr log y
,

where y and r are fixed and the sum is over primes q.
Here, for two functions f and g with positive real values, we use the notation f(x) '

g(x) and f(x) ( g(x) if we have positive constants c and c1, c2 such that, for all x,
f(x) ≤ cg(x) and c1g(x) ≤ f(x) ≤ c2g(x), respectively.

Acknowledgements: The results of this paper are contained in my doctoral thesis
[acC]. I am very grateful to my doctoral thesis supervisor, Professor M. Ram Murty, for
his many valuable suggestions and comments on previous versions of this paper.

2 Proof of Theorem 1.2

Let us observe that for a prime p ≥ 3 of good reduction for E, the p-primary part of
E(Fp) is either trivial or of order p, for otherwise p2|#E(Fp), so that p2 ≤ p+1+2

√
p by

Hasse’s bound [Si, p. 131]. Since this is not possible for p ≥ 3, we deduce that for such
primes p, the p−primary part of E(Fp) is always cyclic. Hence, to enumerate the primes
p for which E(Fp) is cyclic, it suffices to consider the q-primary components of the group
for q #= p.

From [Mu1, p.159] we know that
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Lemma 2.1 For an elliptic curve E defined over Q and for a prime p of good reduction
and a prime q #= p, we have that p splits completely in Lq if and only if E(Fp) contains
a (q, q)− type subgroup (that is, a subgroup isomorphic to Z/qZ × Z/qZ). Consequently,
E(Fp) is a cyclic group if and only if p does not split completely in the field extension
Lq = Q(E[q]) for any prime q #= p.

From now on p will be used to denote primes of good reduction for E and we shall
omit to specify it. Also q will be used to denote rational primes. Using the lemma above,
we obtain that

f(x, Q) = #{p ≤ x, p does not split completely in any Lq for all primes q #= p}.

Let us observe that if p splits completely in Lq for some q, then q2|#E(Fp). Therefore,
q2 ≤ p + 1 + 2

√
p by Hasse’s bound, and so p ≤ x gives q ≤ 2

√
x.

We recall that the field extension Lq/Q has the following properties: it is normal,
its ramified primes are divisors of qN , where N is the conductor of E, and Lq ⊇ Q(ζq),
where ζq denotes a primitive q-th root of unity (see [Si, p. 90, 98]). From classical results
in the theory of elliptic curves, we know that the degree n(q) := [Lq : Q] is ' q4 for all q,
and from results of Serre [Se1, p. 294], we have that, for elliptic curves without complex
multiplication, the degree n(q) is ( q4 for q sufficiently large.

To estimate f(x, Q) we start by using the simple asymptotic sieve as in [Mu1, p.
153-154]. For real numbers y and z (which will be optimally chosen later), let

N(x, y) := #{p ≤ x, p does not split completely in any Lq for q ≤ y},

M (x, y, z) := #{p ≤ x, p splits completely in some Lq with y ≤ q ≤ z}.

Then
N(x, y) − M

(

x, y, 2
√

x
)

≤ f(x, Q) ≤ N(x, y),

so that
f(x, Q) = N(x, y) + O

(

M
(

x, y, 2
√

x
))

.

We shall estimate each of N(x, y) and M (x, y, 2
√

x) , and then obtain an estimate for
f(x, Q).

2.1 Estimate for N(x, y)

By the inclusion-exclusion principle we have

N(x, y) =
∑

k

′
µ(k)π1(x, Lk/Q),

where the sum is over all square-free positive integers k whose prime divisors are ≤ y.
We want to estimate this sum by using the effective Chebotarev density theorem (a)

stated in section 1. Let us recall the following result of Hensel [Se3, p. 130]: if K/Q is a
finite normal field extension which is ramified only at the primes p1, p2, . . . , pm, then

1

[K : Q]
log | disc(K/Q)| ≤ log[K : Q] +

m
∑

j=1

log pj,
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where disc(K/Q) is the discriminant of K/Q. Applying this result to the field extensions
Lk/Q, we obtain

n(k)|dk|2/n(k) ' k6

and
n(k) (log |dk|)2 ' k12 log2 k ' k14,

where n(k) = [Lk : Q] and dk = disc(Lk/Q), and where we used that n(k) ' k4. We
want to choose y such that for all square-free integers k whose prime divisors are ≤ y, we
have

k14 ' log x.

Let us observe that

k ≤
∏

p≤y

p = exp

(

∑

p≤y

log p

)

≤ exp(2y).

We choose
y = d log log x

for some positive constant d such that exp(2y) ' (log x)1/14. Then the hypothesis of the
unconditional Chebotarev density theorem (a) is satisfied and we obtain:

N(x, y) =

(

∑

k

′µ(k)

n(k)

)

lix + O

(

∑

k

′
x exp

(

−A

√

log x

n(k)

))

for some positive effective constant A. To handle the error term we observe that n(k) '
k4 ' (log x)2/7, and that there are at most 2y, hence at most (log x)d, square-free numbers
composed of primes ≤ y. Hence the error term becomes

O
(

(log x)dx exp
(

−A(log x)5/14
))

,

which is O
(

x(log x)−B
)

for any positive constant B sufficiently large.
Thus we showed that

N(x, y) =

(

∑

k

′µ(k)

n(k)

)

li x + O
(

x(log x)−B
)

.

Let us note that this estimate is unconditional. In his proof, J. -P. Serre used the condi-
tional version of Chebotarev density theorem (b) (see [Mu1, p. 155]) to treat N(x, y).

2.2 Estimate for M (x, y, 2
√

x)

Let us write

M
(

x, y, 2
√

x
)

≤ M

(

x, y,
x1/4

(log x)3

)

+M

(

x,
x1/4

(log x)3
, x1/4(log x)3

)

+M
(

x, x1/4(log x)3, 2
√

x
)

and estimate each of the three terms.
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1. To estimate the first term, we write

M

(

x, y,
x1/4

(log x)3

)

≤
∑

y≤q≤ x1/4

(log x)3

π1(x, Lq/Q)

=
∑

y≤q≤(log x)1/14

π1(x, Lq/Q) +
∑

(log x)1/14<q≤ x1/4

(log x)3

π1(x, Lq/Q).

For the first sum above we proceed as with N(x, y) and obtain

∑

y≤q≤(log x)1/14

π1(x, Lq/Q) =
∑

y≤q≤(log x)1/14

li x

n(q)
+

∑

y≤q≤(log x)1/14

O

(

x exp

(

−A

√

log x

n(q)

))

=
∑

y≤q≤(log x)1/14

li x

n(q)
+ O

(

x(log x)−C
)

for any positive constant C sufficiently large.

To estimate the second sum, we use the conditional version of the Chebotarev
density theorem (c) with δ = 3/4, and Hensel’s result. We note that this is the only
place where we use a “quasi-Riemann Hypothesis”.

∑

(log x)1/14<q≤ x1/4

(log x)3

π1(x, Lq/Q) '
∑

(log x)1/14<q≤ x1/4

(log x)3

lix

n(q)
+

∑

(log x)1/14<q≤ x1/4

(log x)3

x3/4

n(q)
log

(

|dq|xn(q)
)

'
∑

(log x)1/14<q≤ x1/4

(log x)3

lix

n(q)
+

∑

(log x)1/14<q≤ x1/4

(log x)3

x3/4 log(qx).

For the error term
∑

(log x)1/14<q≤ x1/4

(log x)3

x3/4 log(qx) we have:

∑

(log x)1/14<q≤ x1/4

(log x)3

x3/4 log(qx) ≤ x3/4
∑

q≤ x1/4

(log x)3

log q + x3/4(log x)
∑

q≤ x1/4

(log x)3

1

'
x

(log x)2
.

Thus

M

(

x, y,
x1/4

(log x)3

)

' li x
∑

y≤q≤ x1/4

(log x)3

1

n(q)
+ O

(

x(log x)−C
)

+ O

(

x

(log x)2

)

.

Let us remark that, in estimating M
(

x, y, x1/4

(log x)3

)

, we have split the sum over q

such that y ≤ q ≤ (log x)1/14 and (log x)1/14 < q ≤ x1/4

(log x)3 , in order to isolate the

range where we need to invoke the 3/4-quasi-Riemann Hypothesis.
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2. To estimate the second term, let us observe that Lq ⊇ Q(ζq) implies that any
prime p which splits completely in Lq is congruent to 1(mod q). By using the Brun-
Titchmarsh theorem and elementary number theory estimates such as Mertens’
theorem, we obtain:

M

(

x,
x1/4

(log x)3
, x1/4(log x)3

)

'
∑

x1/4

(log x)3
<q≤x1/4(log x)3

x

q log x
q

'
x

log x

∑

x1/4

(log x)3
<q≤x1/4(log x)3

1

q

'
x

(log x)2

∑

x1/4

(log x)3
<q≤x1/4(log x)3

log q

q

'
x

(log x)2

(

log
(

x1/4(log x)3
)

− log
x1/4

(log x)3

)

'
x log log x

(log x)2
.

Thus

M

(

x,
x1/4

(log x)3
, x1/4(log x)3

)

= O

(

x log log x

(log x)2

)

.

3. Now we shall estimate the third term M
(

x, x1/4(log x)3, 2
√

x
)

. This is where we
improve Serre’s method of proving Theorem 1.1.

For each integer a with |a| ≤ 2
√

x, we consider the set

Sa(q) := {p ≤ x, ap = a and p splits completely in Lq} ,

where ap := p + 1 − #E(Fp). Then

M
(

x, x1/4(log x)3, 2
√

x
)

≤
∑

x1/4(log x)3<q≤2
√

x

∑

a∈Z,
|a|≤2

√
x

#Sa(q).

We observe that p ∈ Sa(q) implies p ≡ 1(mod q) and p + 1 − a ≡ 0(mod q2), hence
q|a − 2. Then, for u = x1/4(log x)3,

∑

u<q≤2
√

x

∑

a∈Z,
|a|≤2

√
x

#Sa(q) ≤
∑

u<q≤2
√

x

∑

a∈Z,
|a|≤2

√
x

a'=2,q|a−2

∑

p≤x,
q2|p+1−a

1 +
∑

u<q≤2
√

x

∑

p≤x,
q2|p−1

1 =:
∑∗

+
∑∗∗

,

where the second sum arises from the case a = 2, for which we have q2|p − 1.

We estimate
∑∗

and
∑∗∗

. Let us note that for fixed integers α and β, we have
the elementary estimate

# {n ≤ x, n ≡ α(modβ)} ≤
x

β
+ 1,
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where n denotes a positive integer. Hence we obtain:

∑∗
≤

∑

u<q≤2
√

x

∑

a∈Z,
|a|≤2

√
x

a'=2,q|a−2

(

x

q2
+ 1

)

'
∑

u<q≤2
√

x

(

x

q2
+ 1

) (√
x

q
+ 1

)

'
x3/2

u2 log u
+

x

u log u
+
√

x log x +
√

x;

∑∗∗
≤

∑

u<q≤2
√

x

(

x

q2
+ 1

)

'
x

u log u
+
√

x.

We plug in u = x1/4(log x)3 and obtain

M
(

x, x1/4(log x)3, 2
√

x
)

= O

(

x

(log x)7

)

.

2.3 Putting everything together

Using the estimates obtained in the previous sections we get that, for any sufficiently
large B,

f(x, Q) = li x
∑

k

′µ(k)

n(k)

+ O









li x
∑

y<q≤ x1/4

(log x)3

1

n(q)









+ O
(

x(log x)−B
)

+ O

(

x

(log x)2

)

+ O

(

x log log x

(log x)2

)

+ O

(

x

(log x)7

)

.

Let us analyze li x
∑

k

′ µ(k)
n(k) and lix

∑

y<q≤ x1/4

(log x)3

1

n(q)
. For the first sum we write

∑

k

′µ(k)

n(k)
=

∑

k

µ(k)

n(k)
−

∑

k

′′µ(k)

n(k)
,

where
∑

k

′′
means that the sum is over those square-free positive integers k for which

there exists a prime divisor q > y.
We recall that n(q) = (q2 − 1) (q2 − q) for q sufficiently large (see [Se1, p. 294]), and,

we note that, more precisely, this equality holds for any prime q ≥ aN(log log N)1/2,
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where a is a positive absolute constant and N is the conductor of the elliptic curve (see,
for example, [acC] or [Kr]). We write the square-free integer k as

k = k1k2,

where k1 is composed of primes < aN(log log N)1/2, and k2 is composed of primes ≥
aN(log log N)1/2. As explained in [acC], we have

n(k) = n(k1)n(k2) ≥ φ(k1)n(k2) = φ(k1)
∏

q|k2

(

q2 − 1
) (

q2 − q
)

$ φ(k1)(k2)
4,

where we used that Lk1 ⊇ Q(ζk1).

We denote by
∑

k1

the sum running over square-free positive integers k1 composed

of primes < aN(log log N)1/2, and by
∑

k2

′′
the sum running over square-free positive

integers k2 composed of primes ≥ aN(log log N)1/2 and having a prime divisor > y (here
we also use that y = y(x) ≥ aN(log log N)1/2). Then we have (remembering that we are
summing over square-free numbers):

∑

k

′′µ(k)

n(k)
≤

∑

k=k1k2

′′ 1

φ(k1)n(k2)
'

∑

k1

1

φ(k1)

∑

k2

′′ 1

(k2)4
'

∑

q>y

1

q4
'

1

y3 log y
.

Since in fact y = d log log x, we obtain

li x
∑

k

′µ(k)

n(k)
= lix

∑

k

µ(k)

n(k)
+ O

(

x

(log x)(log log x)3 log log log x

)

.

For the second sum li x
∑

y<q≤ x1/4

(log x)3

1

n(q)
we note again that

∑

y<q≤ x1/4

(log x)3

1

n(q)
'

∑

q≥y

1

q4
'

1

y3 log y
.

Hence

li x
∑

y<q≤ x1/4

(log x)3

1

n(q)
= O

(

x

(log x)(log log x)3 log log log x

)

.

These estimates give us

f(x, Q) = CE li x + O

(

x

(log x)(log log x)3 log log log x

)

.

If we use the conditional effective Chebotarev density theorem (c) for estimating

N(x, y) and M
(

x, y, x1/4

(log x)3

)

, with y chosen such that

2yy =
x1/4

(log x)3
,
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then we obtain

f(x, Q) = CE lix + O

(

x log log x

(log x)2

)

,

that is, the error term is the same as the one obtained by Serre by assuming the (full)
Generalized Riemann Hypothesis for the Dedekind zeta functions of Lk.

Indeed, using version (c) of the Chebotarev density theorem with δ = 3
4 , we obtain

N(x, y) =

(

∑

k

′µ(k)

n(k)

)

li x +
∑

k

′
O

(

x3/4

(

log |dk|
n(k)

+ log x

))

.

We use Hensel’s result as before and obtain that the error term above is
∑

k

′
O

(

x3/4 (log k + log x)
)

.

Since the number of square-free positive integers k whose prime divisors are ≤ y is at
most 2y, and since such a k is ≤ exp(2y), we have that the error term is in fact

O
(

2yx3/4(y + log x)
)

.

Our new choice of y makes this error term be O
(

x
(log x)2

)

. For M
(

x, y, x1/4

(log x)3

)

we proceed

in a similar way and obtain

M

(

x, y,
x1/4

(log x)3

)

≤ li x
∑

y≤q< x1/4

(log x)3

1

n(q)
+ O

(

x

(log x)3

)

.

The terms M
(

x, x1/4

(log x)3 , x
1/4(log x)3

)

and M
(

x, x1/4(log x)3, 2
√

x
)

are estimated exactly

as before. It remains to analyze the sums li x
∑

k

′′ µ(k)
n(k) and li x

∑

y<q≤ x1/4

(log x)3

1

n(q)
. Both are

O
(

x
y3(log x)(log y)

)

, which, with the new choice of y, is O
(

x
(log x)4

)

. Hence the biggest error

term we get is O
(

x(log log x)
(log x)2

)

and this gives us the asymptotic formula we claimed above.

The proof we presented in detail points out that in order to have an unconditional
estimate for f(x, Q) in the non-CM case, we need to find good unconditional estimates

for M
(

x, (log x)1/14, x1/4

(log x)3

)

.

2.4 Final remarks

Our new contribution to this problem is the unconditional treatment of
M

(

x, x1/4(log x)3, 2
√

x
)

. It may be useful in later research to know that this term can
be treated in other ways as follows.

For a fixed integer a #= 2, |a| ≤ 2
√

x, we first show that if we have p ≤ x such that
ap = a and p splits completely in some Lq with x1/4(log x)3 < q ≤ 2

√
x, then q is uniquely

determined by a. We have seen that such a q satisfies

q|(a− 2).
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If we have two such primes q1 #= q2, with x1/4(log x)3 < q1, q2 ≤ 2
√

x, then the above
divisibility relation and Hasse’s inequality give us

√
x(log x)6 < 2

√
x − 2,

which is a contradiction.
Thus for each a #= 2 we have at most one prime qa such that qa|(a − 2) and

x1/4(log x)3 < qa ≤ 2
√

x. Then, with notation as in section 2.2,

∑

x1/4(log x)3<q≤2
√

x

∑

a∈Z,
a'=2,

|a|≤2
√

x

#Sa(q) ≤
∑

a∈Z,
a'=2,

|a|≤2
√

x

#
{

p ≤ x, p ≡ a − 1(mod q2
a)

}

≤
∑

a∈Z,
a'=2,

|a|≤2
√

x

(

x

q2
a

+ 1

)

<

(

x1/2

(log x)6
+ 1

)

4
√

x

= O

(

x

(log x)6

)

.

This argument is in the style of [GM1, th. 1, p. 227-228].
We can also use the following argument (see again the notation in section 2.2).

∑∗
=

∑

a∈Z,
|a|≤2

√
x

a'=2

∑

x1/4(log x)3<q≤2
√

x,
q|a−2

∑

p≤x,
q2|p+1−a

1

'
∑

a∈Z,
|a|≤2

√
x

a'=2

∑

x1/4(log x)3<q≤2
√

x,
q|a−2

(

x

q2
+ 1

)

'
∑

a∈Z,
|a|≤2

√
x

a'=2

∑

x1/4(log x)3<q≤2
√

x,
q|a−2

(

x1/2

(log x)6
+ 1

)

'
∑

a∈Z,
a'=2,

|a|≤2
√

x

x1/2

(log x)6
ν(a − 2),

with ν(t) denoting the number of distinct prime divisors of t. Since the average order of
ν(t) is log log t, we obtain that the sum is

'
x log log x

(log x)6
.

This estimate is slightly weaker than the one we had in section 2.2, but good enough for
our purpose.
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Let us note that for
∑∗∗

we can use the estimate

∑∗∗
' #{p ≤ x, ap = 2} = O

(

x(log log x)2

(log x)2

)

(see [KMu, Theorem 5.1, p. 302]). This, again, is a slightly weaker bound than the one
we obtained in section 2.2 , and will make the final error term in the asymptotic formula

for f(x, Q) be equal to O
(

x(log log x)2

(log x)2

)

.
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