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We give a global description of the Frobenius elements in the division fields of Drinfeld

modules of rank 2. We apply this description to derive a criterion for the splitting mod-

ulo primes of a class of nonsolvable polynomials, and to study the frequency with which

the reductions of Drinfeld modules have small endomorphism rings. We also generalize

some of these results to higher rank Drinfeld modules and prove CM-lifting theorems

for Drinfeld modules.

1 Introduction

Given a finite Galois extension L/K of global fields and a conjugacy class C ⊆ Gal(L/K),

a fundamental problem is that of describing the (unramified) primes p of K for which the

conjugacy class of the Frobenius at p is C . The Chebotarev Density Theorem provides the

density #C/[L : K] of these primes, while, in general, the characterization of the primes

themselves is a finer and deeper question.

One instance of a complete answer to this question is that of the cyclotomics.

For example, for a an odd positive integer, Gal(Q(ζa))� (Z/aZ)×, and so for any rational
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prime p � a, the Frobenius at p is uniquely determined by the residue class of p modulo

a; in particular, p splits completely in Q(ζa) if and only if p≡ 1(mod a). A similar result

was proved by Hayes [19] for the cyclotomic function fields introduced by Carlitz.

Natural extensions of the cyclotomics occur in the context of abelian varieties

and Drinfeld modules through the division fields associated to these objects. For an

abelian variety of dimension 1 (an elliptic curve), defined over a global field, an explicit

global characterization of the Frobenius in the division fields of the variety has been

obtained using central results from the theory of complex multiplication, and similarly

to the case of the cyclotomics, there are numerous applications of this characterization

(cf. [12, 35]). For a higher dimensional abelian variety, the question of describing explic-

itly the Frobenius in the division fields of the variety is open. The focus of our paper is

an investigation of this question in the context of Drinfeld modules, as described below.

Let F be the function field of a smooth, projective, geometrically irreducible

curve over the finite field Fq with q elements. We distinguish a place ∞ of F , called

the place at infinity, and we let A denote the ring of functions in F which have no poles

away from ∞. Let K be a field equipped with a homomorphism γ : A→ K. If γ is injec-

tive, we say that K has A-characteristic 0; if ker(γ )= p � A is a nonzero (prime) ideal,

then we say that K has A-characteristic p. Note that K contains Fq as a subfield. Let τ

be the Frobenius endomorphism of K relative to Fq, that is, the map x �→ xq, and let K{τ }
be the noncommutative ring of polynomials in the indeterminate τ with coefficients in

K and the commutation rule τc = cqτ for any c ∈ K. A Drinfeld A-module over K is a ring

homomorphism

ψ : A→ K{τ }

a �→ψa = γ (a)+
∑

1≤i≤na

αiτ
i, αna �= 0,

whose image is not contained in K. One shows that there is an integer r ≥ 1, called the

rank of ψ , such that na = r logq |a|∞ for all a∈ A, where | · |∞ is the normalized valuation

of F defined by ∞; see [11]. Two Drinfeld modules, ψ, φ, are isomorphic over K if there

exists c ∈ K× such that ψa = c−1φac for all a∈ A.

Let ψ be a Drinfeld module of rank r over F , with γ being the canonical embed-

ding of A into its fraction field F (this shall be our setting throughout). We say ψ

has good reduction at the prime p of A if we can find φ over F with the following

properties:

(i) φ is isomorphic to ψ over F ;
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(ii) for all a∈ A, the coefficients of φa are integral at p;

(iii) the map

φ ⊗ Fp : A→ Fp{τ }

a �→ φa mod p

is a Drinfeld A-module of rank r over Fp := A/p.

Let Pψ denote the set of primes of good reduction of ψ . We will often implicitly assume

that ψ itself satisfies (ii) and (iii) at a given prime of good reduction.

The ring of K-endomorphisms of ψ , EndK(ψ), is the centralizer in K{τ } of the

image of A under ψ . Denote by F∞ the completion of F at ∞. The ring EndK(ψ) is a

projective A-module of rank ≤ r2 with the property that D := EndK(ψ)⊗A F is a division

algebra over F such that D ⊗F F∞ is also a division algebra (over F∞). Moreover, if K

has A-characteristic 0, then D is a field extension of F of degree ≤ r; see [11]. In this last

case, the place ∞ does not split in the extension D/F . We call a finite field extension F ′

of F imaginary if ∞ does not split in F ′.

The Drinfeld module ψ endows the algebraic closure K̄ of K with an A-module

structure, where a∈ A acts by ψa. We shall write ψ K̄ if we wish to emphasize this action.

The a-torsion ψ [a] ⊂ K̄ of ψ is the kernel of ψa, that is, the set of zeros of the poly-

nomial ψa(x) := γ (a)x +∑
1≤i≤na

αixqi ∈ K[x]. The field K(ψ [a]), obtained by adjoining the

elements of ψ [a] to K, is called the a-division field of ψ .

It is clear that ψ [a] has a natural structure of an A-module. Assume a is coprime

to ker(γ ), if the A-characteristic of K is nonzero. Then, ψ [a] �A (A/aA)⊕r and ψ [a] ⊂ Ksep

(since ψ ′
a(x)= γ (a) �= 0). The action of GK := Gal(Ksep/K) on ψ [a] gives rise to a Galois

representation

ρ̄ψ,a : GK → GLr(A/aA). (1)

In the theory of Drinfeld modules, the study of the division fields and the Galois repre-

sentations associated to ψ plays a central role. For example, when r = 1, this study leads

to explicit class field theory of F (see [11, 19]).

In this paper, we mostly deal with Drinfeld modules for A= Fq[T ], which, in some

respects, is similar to that of elliptic curves over Q. Our first goal is to provide an explicit

global characterization of the Frobenius at a prime p of F in the division fields of ψ

when r = 2. We also give a less explicit version of this result which is valid for any r ≥ 2.

These results have several interesting applications, including a criterion for the splitting
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modulo primes of a class of nonsolvable polynomials studied by Abhyankar. The second

goal of the paper is to study the frequency with which the reductions of ψ modulo

p have a small endomorphism ring. This result opens up further important questions

about the behaviour of the reductions of ψ modulo primes and broadens a major theme

of research related to the Sato–Tate conjecture and the Lang–Trotter conjectures. Finally,

the third goal of the paper is to prove CM-lifting theorems for general Drinfeld modules,

providing a function field counterpart of Deuring’s Lifting Theorem.

Now we give the precise statements of our main results.

Theorem 1. Let q be an odd prime power, A= Fq[T ] and F = Fq(T). Let ψ : A→ F {τ } be a

Drinfeld A-module over F , of rank 2. Let p = pA∈Pψ be a prime of good reduction of ψ ,

where p∈ A is monic and irreducible. Let ap(ψ),bp(ψ), δp(ψ) be the following uniquely

determined elements of A:

(a) ap(ψ) is the coefficient of x in the p-Weil polynomial of ψ ,

Pψ,p(x)= x2 + ap(ψ)x + up(ψ)p∈ A[x],

where up(ψ) ∈ F×
q ;

(b) bp(ψ) is the unique monic polynomial such that, for any root πp(ψ) of Pψ,p,

EndFp
(ψ ⊗ Fp)/A[πp(ψ)] ∼=A A/bp(ψ)A;

(c) δp(ψ) is the unique generator of the discriminant ideal of EndFp
(ψ ⊗ Fp)

satisfying

ap(ψ)
2 − 4up(ψ)p= bp(ψ)

2δp(ψ).

Then, for any a∈ A coprime to p, the reduction modulo a of the matrix

⎛
⎜⎜⎝

−ap(ψ)

2

δp(ψ)bp(ψ)

2
bp(ψ)

2
−ap(ψ)

2

⎞
⎟⎟⎠ ∈ M2(A)

represents the conjugacy class in GL2(A/aA) of the image under ρ̄ψ,a of the Frobenius at

p in the a-division field F (ψ [a]) of ψ . �

An immediate consequence to this result is a criterion for the splitting com-

pletely of a prime in F (ψ [a]), reminiscent of that for cyclotomic fields.
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Corollary 2. In the setting of Theorem 1, the prime p splits completely in F (ψ [a])/F if

and only if

ap(ψ)≡ −2 (mod a)

and

bp(ψ)≡ 0 (mod a). �

Moreover, we deduce the A-module structure of Fp defined by the reduction

ψ ⊗ Fp.

Corollary 3. In the setting of Theorem 1, the A-module structure ψFp is given explicitly

by

ψFp �A A/d1,p(ψ)A× A/d2,p(ψ)A,

where

d1,p(ψ)= gcd
(

bp(ψ)

2
,

ap(ψ)

2
+ 1

)
∈ A,

d2,p(ψ)= 1 + ap(ψ)+ up(ψ)p

d1,p(ψ)
∈ A,

and d1,p(ψ) divides d2,p(ψ) (hence are uniquely determined up to a constant factor). In

particular, if bp(ψ)= 1, then ψFp is A-cyclic. �

For higher rank Drinfeld modules, we prove the following generalizations of

Theorem 1.

Theorem 4. Let A= Fq[T ] and F = Fq(T). Let ψ : A→ F {τ } be a Drinfeld A-module over

F , of rank r ≥ 2. Let p = pA be a prime of good reduction of ψ , and πp(ψ) be any root of

the p-Weil polynomial Pψ,p of ψ .

(a) There are uniquely determined nonzero monic polynomials bp,1(ψ), . . . ,

bp,r−1(ψ) ∈ A such that

EndFp
(ψ ⊗ Fp)/A[πp(ψ)] ∼=A A/bp,1(ψ)A⊕ · · · ⊕ A/bp,r−1(ψ)A,

and

bp,i(ψ) divides bp,i+1(ψ) for i = 1, . . . , r − 2.
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(b) If r is coprime to q, then

disc(Pψ,p)A= disc(EndFp
(ψ ⊗ Fp))(bp,1(ψ) · · · bp,r−1(ψ))

2,

where disc(Pψ,p) is the discriminant of the polynomial of Pψ,p, and

disc(EndFp
(ψ ⊗ Fp)) is the discriminant ideal of EndFp

(ψ ⊗ Fp).

(c) Assume 0 �= a∈ A is coprime to p. Let Ja be the subfield of F (ψ [a]) fixed by

ρ̄ψ,a(GF ) ∩ Z(A/aA), where Z(A/aA) denotes the center of GLr(A/aA). Then p

splits completely in Ja if and only if a divides bp,1(ψ). �

Comparing (a) and (b) of Theorem 4 with (b) and (c) of Theorem 1, we see that

the r − 1 invariants bp,1(ψ), . . . ,bp,r−1(ψ) generalize bp(ψ) to the rank-r case. Although

Theorem 4 does not provide an explicit matrix for the Frobenius at p, Part (c) of the

theorem can be interpreted as a generalization of Corollary 2. In the rank-2 case, bp(ψ)

controls both EndFp
(ψ ⊗ Fp)/A[πp(ψ)] and the splitting behavior of p in division fields.

In higher ranks, bp,r−1(ψ) controls the difference between the endomorphism rings,

whereas bp,1(ψ) controls the splitting of p. (Indeed, since all bp,i(ψ) divide bp,r−1(ψ), we

have EndFp
(ψ ⊗ Fp)∼= A[πp(ψ)] if and only if bp,r−1(ψ)= 1.)

An interesting arithmetic application of Theorems 1 and 4 is a “reciprocity law”

for splitting of certain nonsolvable polynomials in the style of Klein’s approach to non-

solvable quintics using elliptic curves (which itself is a generalization of a theorem of

Gauss that the polynomial x3 − 2 ∈ Z[x] splits completely modulo a rational prime p≥ 5

if and only if p= α2 + 27β2 for some integers α, β). To introduce this class of polynomi-

als, assume A= Fq[T ] and let ψ : A→ F {τ } be a Drinfeld A-module of rank r defined by

ψT = T + g1τ + g2τ
2 + · · · + grτ

r. (2)

Consider the polynomial

fψ(x) := T + g1x + · · · + grx(q
r−1)/(q−1) ∈ F [x] (3)

obtained from ψT (x) via the relation

ψT (x)= xfψ(x
q−1).

Theorem 5. Assume r ≥ 2 is coprime to q.

(a) fψ splits completely modulo p ∈Pψ only if T2 divides the discriminant of

Pψ,p. When r = 2, this can be explicitly stated as fψ splits completely modulo
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p only if p= uα2 + aT2 for some α,a∈ A and u∈ F×
q , where p is the monic

generator of p.

(b) Suppose q ≥ 5, r = 2, and fψ(x)= T + x + gxq+1. If g ∈ F×
q or g = hq−1 for some

nonconstant h∈ A not divisible by any prime of degree 1 except possibly

T , then the Galois group of fψ over F is isomorphic to PGL2(Fq), and, in

particular, is nonsolvable.

(c) If fψ(x)= T + uTx + x(q
r−1)/(q−1), where u∈ F×

q , then the Galois group of fψ

over F is isomorphic to PGLr(Fq).

Under the assumptions in (b) or (c), the set of primes {p : bp,1(ψ)≡ 0 (mod T)} has Dirich-

let density 1/# PGLr(Fq). �

Polynomials similar to fψ(x) in (b) and (c) were extensively studied by Abhyankar

in connection with the problem of resolution of singularities in positive characteristic

(cf. [1, 2]); for that reason, we call them Abhyankar trinomials. In fact, the claim in Part

(c) of Theorem 5 is a special case of [1, Theorem 1.1]. The argument in [1] is somewhat

hard to follow, mostly due to the generality Abhyankar aims for, but also because of fre-

quent references to his other papers. For that reason, we give a proof of (b) by adapting

Serre’s methods for elliptic curves [34] to Drinfeld modules.

In the above results, the invariants ap(ψ),bp(ψ), δp(ψ) associated to ψ play an

essential role. The first one, “the Frobenius trace”, has been the subject of several studies

in relation to the Sato–Tate and Lang–Trotter Conjectures for Drinfeld modules (cf. [3, 6,

9, 10, 15, 21, 31, 39, 41]). In this paper, we study the second invariant, bp(ψ), and prove

the following theorem.

Theorem 6. Let the setting and notation be as in Theorem 1.

(a) If EndF̄ (ψ)= A, then, for x ∈ N going to infinity, we have the asymptotic

formula

#{p ∈Pψ : deg p = x,EndFp
(ψ ⊗ Fp)= A[πp(ψ)]} ∼

∑
m∈A

m monic

μA(m)cJm(x)

[Jm : F ]
· qx

x
,

(4)

where μA(·) denotes the Möbius function on A, Jm is the subfield of F (ψ [m])

fixed by the scalars, cJm := [Jm ∩ F̄q : Fq], and

cJm(x) :=
⎧⎨
⎩cJm if cJm |x,

0 otherwise.
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Moreover, the Dirichlet density of the set {p ∈Pψ : EndFp
(ψ ⊗ Fp)= A[πp(ψ)]}

exists and equals
∑

m∈A
m monic

μA(m)
[Jm:F ] .

(b) If EndF̄ (ψ) is the integral closure of A in a quadratic imaginary extension K

of F , then, for x ∈ N going to infinity, we have the asymptotic formula

#{p ∈Pψ : deg p = x,EndFp
(ψ ⊗ Fp)= A[πp(ψ)]} ∼ cK(x)

2
· qx

x
, (5)

where cK := [K ∩ F̄q : Fq] and

cK(x) :=
⎧⎨
⎩cK if cK |x,

0 otherwise.

Moreover, the Dirichlet density of the set {p ∈Pψ : EndFp
(ψ ⊗ Fp)= A[πp(ψ)]}

exists and equals 1
2 . �

Theorem 1 is the function field analog of [12, Theorem 2.1]. To prove this theorem,

Duke and Tóth use Deuring’s Lifting Theorem. We avoid using such CM-liftings in the

proof of Theorem 1 by exploiting the fact that a Drinfeld A-module of rank r with endo-

morphism ring A′ can be considered as a Drinfeld A′-module of smaller rank. Neverthe-

less, the question of the existence of CM-liftings for Drinfeld modules is interesting. In

this paper, we prove the following analogue of Deuring’s Lifting Theorem.

Theorem 7. Let A be arbitrary, as at the beginning of this section. Let k be a finite

field with A-characteristic p. Let φ be a Drinfeld A-module of rank 2 defined over k. Let

g ∈ Endk(φ)\A. Then, there exist a discrete valuation field K with A-characteristic 0 and

residue field k, a Drinfeld A-module ψ of rank 2 defined over K, and f ∈ EndK(ψ), such

that φ with endomorphism g is the reduction of ψ with endomorphism f . �

In Section 5, we prove a general result about CM-liftings of Drinfeld modules of

arbitrary rank from which Theorem 7 follows. The proofs of our main results are based

on both algebraic and analytic techniques.

2 Global Description of the Frobenius: Proof of Theorems 1 and 4

2.1 Preliminaries

Throughout this section, we assume that A= Fq[T ]. In addition to the notation in the

introduction, we use the following:

• A(1) denotes the set of monic polynomials in A.
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• For 0 �= a∈ A, deg(a) denotes the degree of a as a polynomial in T and deg(0) :=
−∞.

• For f = a
b ∈ F = Fq(T), deg( f) := deg(a)− deg(b). This defines a valuation on F

with normalized norm | f |∞ := qdeg( f); the corresponding place of F is ∞.

• For a prime ideal 0 �= p � A, Fp denotes the completion of F at p, Fp := A/p, and

deg(p) := [Fp : Fq].

Let ψ : A→ F {τ } be a Drinfeld A-module of rank r. Let l = �A� A be a prime ideal

with generator � ∈ A. For an integer n≥ 1, we define ψ [ln] :=ψ [�n]. (It is easy to see that

this does not depend on the choice of �.) For n′ ≥ n, we have the inclusion ψ [ln] ⊆ψ [ln
′
],

which is compatible with the A-module structure and the action of GF . Hence

ψ [l∞] := lim→
n

ψ [ln] ∼= (Fl/Al)
⊕r,

where Fl and Al are the completions of F and A at l, respectively. The l-adic Tate module

of ψ , defined as

Tl(ψ) := HomAl
(Fl/Al, ψ [l∞])∼= A⊕r

l ,

is endowed with a continuous action of GF , giving rise to a representation

ρψ,l : GF → GLr(Al)

whose reduction modulo l is ρ̄ψ,� of (1).

Assume now that p �= l is a prime of good reduction of ψ . More precisely, if ψ

is given by (2), assume ordp(gi)≥ 0 for all 1 ≤ i ≤ r − 1 and ordp(gr)= 0. Then, according

to [36, Theorem 1], the representation ρψ,l is unramified at p, and so, up to conjugation,

there is a well-defined matrix

ρψ,l(Frobp) ∈ GLr(Al)

whose characteristic polynomial we denote by Pψ,p(x). The polynomial Pψ,p(x) has coef-

ficients in A, does not depend on the choice of l, and is equal to the characteristic poly-

nomial of the Frobenius endomorphism of the reduction ψ ⊗ Fp acting on Tl(ψ ⊗ Fp); see

[36, pp. 478–479]. In particular, the roots of Pψ,p(x) are integral over A. Let πp(ψ) denote

one of those roots.

Proposition 8. The field extension F (πp(ψ))/F is imaginary of degree r. �
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Proof. By the reduction properties of Drinfeld modules, π := πp(ψ) is a Weil number

of rank r over Fp; cf. [36, p. 479; 38, p. 165]. Next, by the properties of Weil numbers,

the extension F (π)/F is imaginary of degree dividing r; see [38, pp. 165–166]. On the

other hand, the norm NF (π)/F (π) ∈ A generates the ideal p[F (π):F ]/r ; cf. [38, p. 167]. Since p

is prime, we must have [F (π) : F ] = r. �

Let

Eψ,p := EndFp
(ψ ⊗ Fp), Ēψ,p := End

F̄p
(ψ ⊗ Fp),

Oψ,p := integral closure of A in F (πp(ψ)).

As a consequence of [38, Theorem 1] and Proposition 8, we have Eψ,p ⊗A F = F (πp(ψ)).

Hence A[πp(ψ)] and Eψ,p are A-orders in F (πp(ψ)), and we have the inclusions

A� A[πp(ψ)] ⊆ Eψ,p ⊆Oψ,p. (6)

It is known that Ēψ,p is a division algebra over F , and at the level of division algebras,

we have the inclusions

F � F (πp(ψ))= Eψ,p ⊗A F =Oψ,p ⊗A F ⊆ Ēψ,p ⊗A F . (7)

We say that p is a supersingular prime for ψ if dimF (Ēψ,p ⊗A F )= r2. We say that p is

an ordinary prime for ψ if dimF (Ēψ,p ⊗A F )= r. If r = 2, then any prime p ∈Pψ is either

ordinary or supersingular.

When r = 2, the coefficients of

Pψ,p(x)= x2 + ap(ψ)x + a′
p(ψ)

can be explicitly determined as follows. Let NFp/Fq be the norm map from Fp to Fq. Let

up(ψ) := (−1)deg(p)NFp/Fq(g2)
−1,

where, by abuse of notation, g2 in the norm denotes the reduction of g2 modulo p. For an

integer k≥ 1, put [k] := Tqk − T , and define s0 := 1, s1 := g1,

sk := −[k − 1]sk−2gqk−2

2 + sk−1gqk−1

1 (k≥ 2).
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Proposition 9.

(i) The coefficient ap(ψ) ∈ A is uniquely determined by

ap(ψ)≡ −up(ψ)sdeg(p)(mod p)

and

deg ap(ψ)≤ deg(p)

2
. (8)

(ii) The coefficient a′
p(ψ) ∈ A is equal to up(ψ)p, where p∈ A(1) is the monic gen-

erator of p. �

Proof. This follows from [15, Theorem 2.11, Proposition 3.7]. �

2.2 Proof of Theorem 1 and its corollaries

We keep the notation of Section 2.1, but assume that r = 2 and q is odd. Note that even

though the characteristic polynomial of ρ̄ψ,a(Frobp) can be computed in terms of g1, g2,

and p, this is not sufficient for determining the conjugacy class of ρ̄ψ,a(Frobp), as this

matrix is not necessarily semi-simple. For this, we need an extra invariant bp(ψ) related

to the reduction of ψ at p. Both A[πp(ψ)] and Eψ,p are A-orders in Oψ,p, hence of the form

A[πp(ψ)] = A+ cp(ψ)Oψ,p, (9)

Eψ,p = A+ c′
p(ψ)Oψ,p (10)

for some ideals cp(ψ), c′
p(ψ) of A, satisfying

c′
p(ψ) | cp(ψ). (11)

We define

bp(ψ)= bp(ψ)A := cp(ψ)

c′
p(ψ)

, (12)

where bp(ψ) ∈ A(1). This is an ideal of A such that

Eψ,p/A[πp(ψ)] � A/bp(ψ). (13)

In other words, the ideal bp(ψ) measures how much larger the endomorphism ring Eψ,p

is than A[πp(ψ)].
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Proposition 10. Let Δ(Eψ,p) denote the discriminant ideal of Eψ,p. Then, with prior

notation,

(
ap(ψ)

2 − 4up(ψ)p
)

A= bp(ψ)
2Δ(Eψ,p). (14)

Consequently, there exists δp(ψ) ∈ A such that

Δ(Eψ,p)= δp(ψ)A

and

ap(ψ)
2 − 4up(ψ)p= bp(ψ)

2δp(ψ). (15)

�

Proof. Let Δ(Oψ,p) be the discriminant ideal of Oψ,p, and let

dp(ψ) := ap(ψ)
2 − 4up(ψ)p∈ A

be the discriminant of the characteristic polynomial Pψ,p. On one hand, by (10),

Δ(Eψ,p)= c′
p(ψ)

2Δ(Oψ,p);

hence, upon multiplying by cp(ψ)
2 and using (12),

bp(ψ)
2Δ(Eψ,p)= cp(ψ)

2Δ(Oψ,p). (16)

On the other hand, by (9),

dp(ψ)A= cp(ψ)
2Δ(Oψ,p). (17)

By putting (16) and (17) together, we complete the proof. �

Proof of Theorem 1. By definition, Eψ,p is the centralizer of the image of A under ψ in

Fp{τ }. Thus there exists a natural embedding

φ : Eψ,p ↪→ Fp{τ }
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such that the diagram:

A ��

ψ⊗Fp ���
��

��
��

�
Eψ,p

φ

��

Fp{τ }

is commutative.

Recalling that A� Eψ,p and using that Eψ,p is an A-module of rank 2, while ψ is

a Drinfeld A-module of rank 2, we see that φ defines an elliptic Eψ,p-module over Fp of

rank 1 in the sense of [19, Definition 2.1]. We will use φ to determine the action of the

Frobenius of Gal(F̄p/Fp) on ψ [a].

On one hand, since (a, p)= 1, we have an isomorphism of Eψ,p-modules φ[a] �Eψ,p

Eψ,p/aEψ,p. On the other hand, from the commutative diagram, we have ψ [a] �Eψ,p φ[a].

Thus

ψ [a] �Eψ,p Eψ,p/aEψ,p.

Under this isomorphism, the action of the Frobenius of Gal(F̄p/Fp) on ψ [a] corresponds

to multiplication by πp(ψ) on Ep(ψ)/aEψ,p.

We now explore how this action extends to the A-module structure of ψ [a]. We

fix a square root
√
δp(ψ) of δp(ψ) in F sep and write

Eψ,p = A+√
δp(ψ)A.

By (15),

πp(ψ)= −ap(ψ)

2
+√

δp(ψ)
bp(ψ)

2
∈ Eψ,p, (18)

and so the action of πp(ψ) on the A-module Eψ,p is given by (18) and

πp(ψ)
√
δp(ψ)= δp(ψ)bp(ψ)

2
+√

δp(ψ)

(
−ap(ψ)

2

)
.

This completes the proof of Theorem 1. �

Corollary 2 is an immediate consequence to Theorem 1. The description of d1,p(ψ)

in Corollary 3 is a consequence to Corollary 2 and the property that, for a∈ A with

(a, p)= 1, p splits completely in F (ψ [a])/F if and only if A/aA× A/aA is isomorphic to
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an A-submodule of ψFp; see [8, Proposition 23]. The description of d2,p(ψ) in Corollary 3

is a consequence to

Pψ,p(1)A= χ(ψFp)= d1,p(ψ)d2,p(ψ)A,

where χ(ψFp) denotes the Euler–Poincaré characteristic of ψFp (see [14]).

2.3 Proof of Theorem 4

To simplify the notation, let π := πp(ψ) and E := Eψ,p. From Proposition 8 and (6) we get

that A[π ] ⊆ E are A-orders in F (π). Since A is a principal ideal domain and [F (π) : F ] = r,

the A-modules A[π ] and E are free of rank r. Now by the elementary divisors theorem

[24, Theorem III.7.8], there is an exact sequence of A-modules

0 −→ A[π ] −→ E −→ A/b0 A⊕ A/b1 A⊕ · · · ⊕ A/br−1 A−→ 0, (19)

where b0, . . . ,br−1 ∈ A are uniquely determined monic polynomials such that

b0 | b1 | · · · | br−1. (20)

(Of course, b0, . . . ,br−1 depend on ψ and p, which we omit from notation.) Note that every

element of A[π ], considered as an element of E , is a multiple of b0. But 1 ∈ A[π ], so b0 = 1.

In other terms, A/b0 A is trivial, and can be ignored. This proves Part (a) of the theorem.

If we assume that r is coprime to q, then the extension F (π)/F is separable. The

elementary properties of discriminants then imply (cf. [24, Exercise VI.32])

disc(Pψ,p)A= disc(A[π ])= disc(E)(bp,1(ψ) · · · bp,r−1(ψ))
2,

which is (b).

As in the rank-2 case, we have an isomorphism ψ [a] �E E/aE with the action

of ρ̄ψ,a(Frobp) on the left-hand side corresponding to multiplication by π on the right-

hand side. Consider the A-linear transformation of the free rank-r A-module E induced

by multiplication by π . This transformation is congruent to an element of the center

Z(A)∼= Aof Mr(A)modulo a if and only if A[π ] ⊆ A+ aE . On the other hand, A[π ] ⊆ A+ aE

if and only if (E/aE)/(A[π ]/(A[π ] ∩ aE))�A (A/aA)⊕r−1. Tensoring (19) with A/aA, we see

that this last condition is equivalent to

(A/b1 A⊗A A/aA)⊕ · · · ⊕ (A/br−1 A⊗A A/aA)�A (A/aA)⊕r−1.
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As is easy to check,

A/bi A⊗A A/aA�A A/gcd(bi,a)A.

Thus, Frobp acts trivially on Ja (equivalently, p splits completely in Ja) if and only if

a divides all bi. Since b1 divides all bi, this last condition is equivalent to a|b1. This

concludes the proof of the theorem.

3 Abhyankar trimonials: proof of Theorem 5

Let ψ and fψ be as in (2) and (3), respectively. Let Gal( fψ) denote the Galois group of

the splitting field of fψ over F . We consider the composition of ρ̄ψ,T with the natural

projection onto PGLr(A/T A), and, after identifying A/T A� Fq, we write it as

ρ̂ψ,T : GF −→ PGLr(Fq).

If 0 �= s ∈ψ [T ], then sq−1 is a zero of fψ(x). The center Z(Fq)� F×
q of GL2(Fq) acts on ψ [T ]

by the usual multiplication, that is, γ ∈ F×
q maps s to γ s ∈ F sep. Hence γ maps sq−1 to

γ q−1sq−1 = sq−1, and so the action of GLr(Fq) on the set of zeros of fψ , induced from the

action on ψ [T ], factors through PGLr(Fq). This implies that the action of GF on the set of

zeros of fψ factors through ρ̂ψ,T , and

Gal( fψ)� ρ̂ψ,T (GF ). (21)

Now let p ∈Pψ , p �= T . It follows from (21) and Theorem 4(c) that fψ splits com-

pletely modulo p if and only if bp,1(ψ)≡ 0 (mod T). Therefore, Part (a) of Theorem 5 fol-

lows from Theorem 4(b) and (15).

Now we focus on Part (b) of Theorem 5. Let ψ be the rank-2 Drinfeld module

defined by ψT = T + τ + gτ 2. Our goal is to prove that, provided either g ∈ F×
q or g = hq−1

for some nonconstant h∈ A not divisible by any prime of degree 1 except possibly T ,

ρ̂ψ,T (GF )� PGL2(Fq). (22)

For this, we will follow the general strategy of [34, Section 2.8].

Let us consider the case g ∈ F×
q . Then ψ has good reduction at every prime of A,

and so the extension F (ψ [T ])/F is unramified away from T and ∞. In particular, it is

unramified at every prime p = pA defined by p= T − c for some c ∈ F×
q . For such p let us

outline a few properties of ρ̄ψ,T (Frobp), which will eventually restrict the possible group
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structures of ρ̂ψ,T (GF ). By Proposition 9,

det ρ̄ψ,T (Frobp)= up(ψ)pmod T = c

g
.

Therefore

det ρ̄ψ,T : GF −→ F×
q is surjective. (23)

Again, by Proposition 9,

tr ρ̄ψ,T (Frobp)= −ap(ψ)= −1

g
∈ F×

q . (24)

Hence

dp(ψ)= ap(ψ)
2 − 4up(ψ)p= 1

g2
− 4c

g
, (25)

tp(ψ) := tr ρ̄ψ,T (Frobp)
2

det ρ̄ψ,T (Frobp)
= ap(ψ)

2

up(ψ)p
= 1

cg
. (26)

Since q is odd, (25) implies that dp(ψ) assumes all values of Fq\{ 1
g2 }. In particular, since

q ≥ 5,

there are p for which dp(ψ) is a nonzero square (27)

and

there are p for which dp(ψ) is not a square. (28)

Moreover, (26) implies that there are p for which

tp(ψ) �∈ {0,1,2,4} (29)

and

tp(ψ) does not satisfy u2 − 3u+ 1 = 0 (30)

(e.g., if the characteristic is not 3, then c := (3g)−1 gives the value 3, which satisfies these

restrictions).

We will use the following classical theorem.
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Theorem 11 (Dickson). Any proper subgroup of PGL2(Fq) is contained in one of the

groups:

(i) a Borel subgroup;

(ii) PSL2(Fq);

(iii) a conjugate of the subgroup PGL2(F) for some subfield F � Fq;

(iv) a dihedral group D2n of order 2n, where n is not divisible by the character-

istic of Fq;

(v) a subgroup isomorphic to one of the permutation groups A4, A5, S4. �

Proof. See [22, Theorem 8.27]. �

The properties of H := ρ̂ψ,T (GF ) derived from the above observations will exclude

all cases in Dickson’s theorem, leaving H = PGL2(Fq) as the only possibility. Indeed, (i)

is not possible by (28), and (ii) is not possible by (23). If H is conjugate to a subgroup

of PGL2(F), then tp(ψ) ∈ F for all p= T − c. This contradicts the fact that tp(ψ)= (cg)−1

assumes all values in F×
q as c varies. Hence (iii) is not possible. If H is isomorphic to

A4, A5, or S4, then for each h∈ H , the element u= tr(h)2/det(h) is equal to 0,1,2,4, or

satisfies u2 − 3u+ 1 = 0; this follows from [34, Section 2.6], although in [34] this is stated

for prime fields. Hence (v) is not possible by (29) and (30). Finally, to exclude (iv) we argue

as in [34, p. 284]. If H is cyclic or dihedral, then ρ̄ψ,T (GF ) is contained in a normalizer of

a Cartan subgroup of GL2(Fq). But the trace of ρ̄ψ,T (Frobp) is nonzero by (24), and by (28)

there is p for which dp(ψ) is not a square; this leads to a contradiction as in [34].

To prove that ρ̂ψ,T (GF )= PGL2(Fq) when g = hq−1 for some nonconstant h∈ A not

divisible by any prime of degree 1, except possibly T , one can use the same arguments

as above, based on the calculations (below, p = T − c with c ∈ F×
q )

det(ρ̄ψ,T (Frobp))= (−1)h(c)−(q−1)(T − c)= c ∈ F×
q ,

tr(ρ̄ψ,T (Frobp))= − 1

h(c)q−1
= −1 ∈ F×

q .

As we mentioned in Section 1, Part (c) of Theorem 5 follows from the main result

in [1]. Finally, for a Drinfeld module ψ producing fψ in Part (b) or (c), the Chebotarev

Density Theorem implies that the Dirichlet density of

{p ∈Pψ : bp,1(ψ)≡ 0 (mod T)} = {p ∈Pψ : fψ splits completely modulo p}

exists and equals 1
# PGLr(Fq)

.
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4 Reductions of Drinfeld Modules: Proof of Theorem 6

4.1 Preliminaries

The proofs of the following two lemmas are elementary and are left to the reader.

Lemma 12. Let y≥ 1 be an integer. Then:

(i)
∑

m∈A(1)
0≤deg m≤y

1 = qy+1−1
q−1 ;

(ii)
∑

m∈A(1)
0≤deg m≤y

deg m ≤ yqy+1−1
q−1 . �

Lemma 13. Let y≥ 3 be an integer and let α > 1. Then:

(i)
∑

a∈A
deg a>y

1
qα deg a = q

(1− 1
qα−1 )q

(α−1)(y+1) ;
(ii)

∑
a∈A

deg a>y

log deg a
qα deg a ≤ log y

(α−1)q(α−1)y log q + 1
y(α−1)2q(α−1)y(log q)2 , provided that

(α − 1)y log q log y> 1. �

Lemma 14. Let h∈ A\Fq and τA(h) :=∑
d∈A(1)

d|h
1 its divisor function. Then, for any ε > 0,

τA(h)�ε |h|ε∞. �

Proof. Over Z, this is a well-known result (see, e.g., the proof in [17, p. 344]). Over A, one

can prove the result essentially in the same way. We include the details for completeness.

Consider the prime factorization h= u
∏
�|h �

α of h. Then

τA(h)

|h|ε∞
=
∏
�|h

α + 1

|�|αε∞
=

∏
�|h

|�|∞<2
1
ε

α + 1

|�|αε∞
·
∏
�|h

|�|∞≥2
1
ε

α + 1

|�|αε∞
≤

∏
�|h

|�|∞<2
1
ε

α + 1

|�|αε∞
·
∏
�|h

|�|∞≥2
1
ε

α + 1

2α
≤

∏
�|h

|�|∞<2
1
ε

α + 1

|�|αε∞
.

Observe that

αε log 2 ≤ exp(αε log 2)= 2αε ≤ |�|αε∞ ,

therefore

α

|�|αε∞
≤ 1

ε log 2
.

We thus obtain

α + 1

|�|αε∞
≤ 2

ε log 2
≤ exp

(
2

ε log 2

)
.
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This gives

∏
�|h

|�|∞<2
1
ε

α + 1

|�|αε∞
≤ exp

(
2

ε log 2
· #{�|h : |�|∞ < 2

1
ε }
)

≤ exp

(
2

ε log 2
· q2

1
ε

q − 1

)
,

a constant in q and ε. �

Now let us fix a∈ A\Fq and, as before, consider Fa := F (ψ [a]) and Ja ⊆ Fa intro-

duced in Part (c) of Theorem 4. This field may also be understood by considering the

composition of ρ̄ψ,a with the projection on to PGL2(A/aA). Indeed, this composition leads

to a Galois representation

ρ̂ψ,a : GF −→ PGL2(A/aA)

satisfying

Ja = (F sep)Ker ρ̂ψ,a.

(Note that we have already considered the special case ρ̂ψ,T in the proof of Theorem 5.)

In what follows, we recall some more properties of the extensions Fa/F and Ja/F .

Theorem 15.

(i) The degrees of the fields of constants of Fa and Ja, that is,

cFa := [Fa ∩ F̄q : Fq],

cJa := [Ja ∩ F̄q : Fq],
(31)

are uniformly bounded from above in terms of ψ . That is,

cJa ≤ cFa ≤ C (ψ)

for some constant C (ψ) ∈ N\{0}.
(ii) The genera gFa, gJa of Fa, Ja are bounded from above by

gJa ≤ gFa ≤ G(ψ)# GL2(A/aA) deg a

for some constant G(ψ) ∈ N\{0}.
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(iii) The degrees of Fa/F , Ja/F are bounded from above by

[Fa : F ] ≤ # GL2(A/aA),

[Ja : F ] ≤ # PGL2(A/aA).

(iv) Assume that EndF̄ (ψ)= A. There exists M(ψ) ∈ A(1) such that, if

(a,M(ψ))= 1, then

Gal(Fa/F )� GL2(A/aA),

Gal(Ja/F )� PGL2(A/aA)

and

cFa = cJa = 1;

if a arbitrary, then

|a|4∞
log deg a + log log q

�ψ [Fa : F ] ≤ |a|4∞,

|a|3∞
log deg a + log log q

�ψ [Ja : F ] ≤ |a|3∞.

(v) Assume that EndF̄ (ψ) �= A. Then

|a|2∞
log deg a + log log q

�ψ [Fa : F ] �ψ |a|2∞,

|a|∞
log deg a + log log q

�ψ [Ja : F ] �ψ |a|∞.

(vi) For x ∈ N, let

Π1(x, Fa/F ) := #{p ∈Pψ : p � a,deg p = x, p splits completely in Fa},

Π1(x, Ja/F ) := #{p ∈Pψ : p � a,deg p = x, p splits completely in Ja}.

Then

Π1(x, Fa/F )= cFa(x)

[Fa : F ]
· qx

x
+ Oψ

(
q

x
2

x
deg a

)
,

Π1(x, Ja/F )= cJa(x)

[Ja : F ]
· qx

x
+ Oψ

(
q

x
2

x
deg a

)
,
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where

cFa(x) :=
⎧⎨
⎩cFa if cFa|x,

0 else,

cJa(x) :=
⎧⎨
⎩cJa if cJa|x,

0 else.

(vii) Let C̄ , Ĉ be conjugacy classes in Gal(Fa/F ), respectively, in Gal(Ja/F ).

Denote by aC̄ , aĈ , respectively, a positive integer such that, for any σ ∈
Gal(Fa/F ), Gal(Ja/F ), respectively, the restriction of σ to Fa ∩ F̄q, Ja ∩ F̄q,

respectively, equals the corresponding restriction of τaC̄ , τaĈ , respectively.

For x ∈ N, let

ΠC̄ (x, Fa/F ) := #{p ∈Pψ : p � a,deg p = x, σp ⊆ C̄ },

ΠĈ (x, Ja/F ) := #{p ∈Pψ : p � a,deg p = x, σp ⊆ Ĉ }.

Then

ΠC̄ (x, Fa/F )= cFa(x) · #C̄

[Fa : F ]
· qx

x
+ Oψ((#C̄ )

1
2 q

x
2 deg a),

ΠĈ (x, Ja/F )= cJa(x) · #Ĉ

[Ja : F ]
· qx

x
+ Oψ((#Ĉ )

1
2 q

x
2 deg a),

where

cFa(x) :=
⎧⎨
⎩cFa if cFa|x − aC̄ ,

0 else,
(32)

cJa(x) :=
⎧⎨
⎩cJa if cJa|x − aĈ ,

0 else.
(33)

Note that this notation generalizes the one in Part (vi). Moreover, note that,

Part (vii) holds also for unions of conjugacy classes. �

Proof. For Part (i), see [16, Remark 7.1.9]. For Part (ii), see [13, Corollary 7]. Part (iii) fol-

lows from the injectivity of the residual representations Gal(Fa/F )−→ GL2(A/aA) and

Gal(Ja/F )−→ PGL2(A/aA). The claims about Gal(Fa/F ), Gal(Ja/F ), [Fa : F ], and [Ja : F ]

in Parts (iv) and (v) can be derived from the main results of [32], as explained in

 at Pennsylvania State U
niversity on February 7, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


7808 A. C. Cojocaru and M. Papikian

[8, Section 3.6]. The fact that cFa = cJa = 1 then follows from Proposition 16 below. Parts

(vi) and (vii) are applications of the effective Chebotarev Density Theorem of [29], as well

as of the prior parts of Theorem 15; see [6, Section 4, 8, Section 4] for more details. That

Part (vii) holds also for unions of conjugacy classes can be seen by modifying the proof

in [29] by using the techniques of [28, Section 3]. �

Proposition 16. Let A= Fq[T ] and F = Fq(T). Let ψ : A→ F {τ } be a Drinfeld module of

rank r defined over F . Assume ψ has good reduction at the primes dividing a∈ A and

Gal(Fa/F )∼= GLr(A/aA). In addition, if r = 2, assume q is odd. Under these assumptions,

the extension Fa of F is geometric, that is, Fq is algebraically closed in Fa. �

Proof. Let aA=∏
i psi

i be the prime decomposition of the ideal aA. Since there is an

isomorphism of groups

GLr(A/aA)∼=
∏

i

GLr(A/p
si
i ),

the commutator of GLr(A/aA) is the direct product of the commutators of GLr(A/p
si
i ). On

the other hand, since the set of nonunits in A/psi
i forms an ideal, according to [27] we

have

[GLr(A/p
si
i ),GLr(A/p

si
i )] = SLr(A/p

si
i ).

(Here we implicitly use the assumption that if r = 2, then q is odd.) This implies that

[GLr(A/aA),GLr(A/aA)] = SLr(A/aA). (34)

We also have the exact sequence

0 → SLr(A/aA)→ GLr(A/aA)
det−→ (A/aA)× → 0. (35)

By assumption, Gal(Fa/F )∼= GLr(A/aA). Let K be the subfield of Fa fixed by

SLr(A/aA). Let F be the algebraic closure of Fq in Fa, and let F ′ = FF . The extension

F ′/F is Galois with Galois group isomorphic to Gal(F/Fq); in particular, it is cyclic. Due

to (34), the field F ′ must be a subfield of K, as Gal(F ′/F ) is a quotient group of Gal(Fa/F )

which is abelian. Thus, it is enough to show that K/F is geometric.
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There exists a Drinfeld A-module φ of rank-1 defined over F such that there is

an isomorphism of Gal(F sep/F )-modules (cf. [37])

φ[a] ∼=
r∧
ψ [a].

Thus, F (φ[a]) is the subfield of Fa fixed by the kernel of the determinant on GLr(A/aA).

Therefore, due to (35), K = F (φ[a]) and Gal(F (φ[a])/F )∼= (A/aA)×. Since ψ has good reduc-

tion at the primes dividing a, the same is true for φ. Finally, by [18, Proposition 5.2],

F (φ[a])/F is geometric. �

Remark 17. In general, a composition of geometric extensions need not be geometric, so

in the previous proof we cannot immediately reduce to the case when aA= ps. �

4.2 Proof of Part (a) of Theorem 6

Let

B(ψ, x) := #{p ∈Pψ : deg p = x, Eψ,p = A[πp(ψ)]}. (36)

Our goal is to derive an explicit asymptotic formula for B(ψ, x), when q is fixed and

x → ∞. We start with the simple remarks that

B(ψ, x)= #{p ∈Pψ : deg p = x,bp(ψ)= 1}

= #{p ∈Pψ : deg p = x, � � bp(ψ) ∀� ∈ A(1)}

=
∑

m∈A(1)

μA(m)#{p ∈Pψ : deg p = x,m | bp(ψ)},

where in the first line we used (13).

An essential aspect in the asymptotic study of such sums is that of determining

the range of the polynomial m ∈ A(1) under summation as a function of x. By combining

the property m | bp(ψ) with (15), we obtain

m2 | (ap(ψ)
2 − 4up(ψ)p).

Upon recalling (8) and using that deg p = x, we deduce that deg m ≤ x
2 . Thus

B(ψ, x)=
∑

m∈A(1)
deg m≤ x

2

μA(m)#{p ∈Pψ : deg p = x,m | bp(ψ)}.
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By Theorem 1, the extension Jm/F has the property that, for any p = pA∈Pψ with

(p,m)= 1,

m | bp(ψ) if and only if p splits completely in Jm. (37)

(Note that, if deg p = x and deg m ≤ x
2 , then the generator p of p is coprime with m; hence

p is unramified in Jm.) Consequently, we can write

B(ψ, x)=
∑

m∈A(1)
deg m≤y

μA(m)Π1(x, Jm/F )+
∑

m∈A(1)
y<deg m≤ x

2

μA(m)#{p ∈Pψ : deg p = x,m | bp(ψ)}, (38)

where y= y(x) is a parameter to be chosen optimally later as a function of q and x, and

Π1(x, Jm/F ) := #{p ∈Pψ : (p,m)= 1,deg p = x, p splits completely in Jm/F }.

The splitting of B(ψ, x) in two sums is guided by the natural strategy of using

an effective version of the Chebotarev Density Theorem, and by the limitation of this

tool for our problem. In particular, the Chebotarev Density Theorem can be used only

for estimating the first sum on the right-hand side of B(ψ, x) above, while other methods

must be developed to estimate the remaining sum. These latter methods constitute the

heart of the proof.

4.2.1 The main term of B(ψ, x)

For y= y(x)≤ x
2 a parameter, we focus on

B1(ψ, x, y) :=
∑

m∈A(1)
deg m≤y

μA(m)Π1(x, Jm/F ).

By Part (vi) of Theorem 15, this becomes

B1(ψ, x, y)=
∑

m∈A(1)
deg m≤y

μA(m)cJm(x)

[Jm : F ]
· qx

x
+ Oψ

⎛
⎜⎜⎝ ∑

m∈A(1) squarefree
deg m≤y

q
x
2

x
deg m

⎞
⎟⎟⎠

=
∑

m∈A(1)

μA(m)cJm(x)

[Jm : F ]
· qx

x
−

∑
m∈A(1)

deg m>y

μA(m)cJm(x)

[Jm : F ]
· qx

x
+ Oψ(q

x
2 +y),

where, in the last line we used Part (ii) of Lemma 12.
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To estimate the middle term, we use Parts (i) and (iv) of Theorem 15, as well as

Lemma 13, and obtain

∑
m∈A(1)

deg m>y

μA(m)cJm(x)

[Jm : F ]
�ψ

∑
m∈A(1) squarefree

deg m>y

log deg m + log log q

q3 deg m
� log y

q2y log q
.

In summary,

B1(ψ, x, y)=
∑

m∈A(1)

μA(m)cJm(x)

[Jm : F ]
· qx

x
+ Oψ(q

x
2 +y)+ Oψ(q

x−2y). (39)

4.2.2 The error term of B(ψ, x)

For y= y(x)≤ x
2 , we focus on obtaining an upper bound for

B2(ψ, x, y) :=
∑

m∈A(1)
y<deg m≤ x

2

μA(m)#{p ∈Pψ : deg p = x,m | bp(ψ)}.

By (15),

m | bp(ψ) ⇒ m2 | (ap(ψ)
2 − 4up(ψ)p).

Thus there exist f, g ∈ A with g squarefree such that

ap(ψ)
2 − 4up(ψ)p= m2 f2g.

Upon relabeling h := mf , we obtain that

B2(ψ, x, y)≤ q
∑
h∈A

y<deg h≤ x
2

τA(h)#{p ∈Pψ : deg p = x, ∃g ∈ A squarefree such that

ap(ψ)
2 − 4up(ψ)p= h2g}.

The above range for deg h is determined simply from

deg h= deg m + deg f,

hence from

deg h≥ deg m> y,
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and also from

h2 | (ap(ψ)
2 − 4up(ψ)p),

hence from

2 deg h≤ deg p= x,

after recalling (8).

Using Lemma 14, we deduce that

B2(ψ, x, y)�ε qεx
∑
h∈A

y<deg h≤ x
2

#{p ∈Pψ : deg p = x, ∃g ∈ A squarefree such that

ap(ψ)
2 − 4up(ψ)p= h2g}.

Note that the factorization ap(ψ)
2 − 4up(ψ)p= h2g is unique up to the multipli-

cation of g by a square in F×
q . As such,

B2(ψ, x, y)�ε qxε
∑

g∈A squarefree
deg g<x−2y

#{p ∈Pψ : deg p = x, g(ap(ψ)
2 − 4up(ψ)p) is a square in A}

=: qxε
∑

g∈A squarefree
deg g<x−2y

Sg(ψ).

The range of deg g above is obtained once again using (8):

2 deg h + deg g ≤ x ⇒ deg g ≤ x − 2 deg h< x − 2y.

To estimate Sg(ψ) we rely on the function field analog of the Square Sieve proved

in [6, Section 7] and in Part (vii) of Theorem 15. Specifically, we use the resulting bound

Sg(ψ)� q
7x
8 (x + deg g)+ q

3x
4 x(x + deg g)2 (40)

(which we will prove shortly) and deduce that

B2(ψ, x, y)�ψ,ε q
15x

8 −2y+xεx3. (41)

Now let us prove (40); our arguments use tools from [6, Sections 7, 8] and are

included in detail for completeness. We recall the Square Sieve for A.
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Theorem 18. Let A be a finite multiset of nonzero elements of A. Let P be a finite set of

primes of A. Let

S(A) := {a∈A : a= b2 for some b ∈ A},

and for any a∈ A define

νP(a) := #{� ∈P : � | a}.

Then

#S(A)≤ #A
#P + max

�1,�2∈P
�1 �=�2

∣∣∣∣∣
∑
a∈A

(
a

�1

)(
a

�2

)∣∣∣∣∣+ 2

#P
∑
a∈A

νP(a)+ 1

(#P)2
∑
a∈A

νP(a)2. �

We apply Theorem 18 in the setting

A := {g(ap(ψ)
2 − 4up(ψ)p) : p ∈Pψ,deg p = x}

and

P := {� ∈ A : � prime,deg �= θ}

for some parameter θ = θ(x) < x, to be chosen optimally later.

We obtain

Sg(ψ)≤ #A
#P + max

�1,�2∈P
�1 �=�2

∣∣∣∣∣∣∣∣
∑
p∈Pψ

deg p=x

(
g
(
ap(ψ)

2 − 4up(ψ)p
)

�1

)(
g
(
ap(ψ)

2 − 4up(ψ)p
)

�2

)∣∣∣∣∣∣∣∣
+ 2

#P
∑
p∈Pψ

deg p=x

νP(g(ap(ψ)
2 − 4up(ψ)p))+ 1

(#P)2
∑
p∈Pψ

deg p=x

νP(g(ap(ψ)
2 − 4up(ψ)p))

2.

(42)

On one hand, by the Prime Number Theorem for A,

#A
#P � qx−θ θ

x
. (43)

On the other hand, by noting that, for any a∈ A, νP(a)≤ deg a, and by using (8),

we deduce that, for primes p of degree x,

νP
(
g
(
ap(ψ)

2 − 4up(ψ)p
))≤ x + deg g.
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We infer the estimates

2

#P
∑
p∈Pψ

deg p=x

νP
(
g
(
ap(ψ)

2 − 4up(ψ)p
))� qx−θ θ

x
(x + deg g), (44)

1

(#P)
∑
p∈Pψ

deg p=x

νP(g(ap(ψ)
2 − 4up(ψ)p))

2 � qx−2θ θ
2

x
(x + deg g)2. (45)

Now let �1, �2 ∈P be distinct primes such that (�1�2,M(ψ))= 1, where M(ψ) ∈
A(1) was introduced in Part (iv) of Theorem 15. (Note that, by choosing x sufficiently

large, hence, as we shall see, by choosing θ(x) sufficiently large, we can ensure that this

condition holds.) We define

T1 = T1(�1, �2) := #
{
p ∈Pψ : deg p = x,

(
ap(ψ)

2 − 4up(ψ)p

�1

)
=
(

ap(ψ)
2 − 4up(ψ)p

�2

)
= 1

}
,

T2 = T2(�1, �2) := #
{
p ∈Pψ : deg p = x,

(
ap(ψ)

2 − 4up(ψ)p

�1

)
=
(

ap(ψ)
2 − 4up(ψ)p

�2

)
= −1

}
,

T3 = T3(�1, �2) := #
{
p ∈Pψ : deg p = x,

(
ap(ψ)

2 − 4up(ψ)p

�1

)
= −

(
ap(ψ)

2 − 4up(ψ)p

�2

)
= 1

}
,

T4 = T4(�1, �2) := #
{
p ∈Pψ : deg p = x,

(
ap(ψ)

2 − 4up(ψ)p

�1

)
= −

(
ap(ψ)

2 − 4up(ψ)p

�2

)
= −1

}
,

and

Ĉ1 = Ĉ1(�1, �2) :=
{
(ĝ1, ĝ2) ∈ PGL2(A/�1�2 A) :

(
(tr g1)

2 − 4 det g1

�1

)
=
(
(tr g2)

2 − 4 det g2

�2

)
= 1

}
,

Ĉ2 = Ĉ2(�1, �2) :=
{
(ĝ1, ĝ2) ∈ PGL2(A/�1�2 A) :

(
(tr g1)

2 − 4 det g1

�1

)
=
(
(tr g2)

2 − 4 det g2

�2

)
= −1

}
,

Ĉ3 = Ĉ3(�1, �2) :=
{

ĝ1, ĝ2) ∈ PGL2(A/�1�2 A) :

(
(tr g1)

2 − 4 det g1

�1

)
= −

(
(tr g2)

2 − 4 det g2

�2

)
= 1

}
,

Ĉ4 = Ĉ4(�1, �2) :=
{
(ĝ1, ĝ2) ∈ PGL2(A/�1�2 A) :

(
(tr g1)

2 − 4 det g1

�1

)
= −

(
(tr g2)

2 − 4 det g2

�2

)
= −1

}
,

where ĝ denotes the projective image of a matrix g ∈ GL2(A/�1�2 A).
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On one hand, we have

S�1,�2 :=
∑
p∈Pψ

deg p=x

(
g
(
ap(ψ)

2 − 4up(ψ)p
)

�1

)(
g
(
ap(ψ)

2 − 4up(ψ)p
)

�2

)

=
(

g

�1

)(
g

�2

)
(T1 + T2 − T3 − T4) . (46)

On the other hand, by Parts (v) and (vii) of Theorem 15, for each 1 ≤ i ≤ 4 we have

Ti =ΠĈi
(x, J�1�2/F )= #Ĉi

# PGL2(A/�1�2 A)
· qx

x
+ Oψ((#Ĉi)

1
2 q

x
2 deg(�1�2)). (47)

Easy counting arguments imply that, for any prime � ∈ A,

# PGL2(A/�A)= |�|∞(|�|2∞ − 1),

#
{

ĝ ∈ PGL2(A/�A) :
(
(tr g)2 − 4 det g

�

)
= 1

}
= |�|3∞

2
+ O(|�|2∞),

#
{

ĝ ∈ PGL2(A/�A) :
(
(tr g)2 − 4 det g

�

)
= −1

}
= |�|3∞

2
+ O(|�|2∞).

Therefore, for each 1 ≤ i ≤ 4,

#Ĉi =
( |�1|3∞

2
+ O(|�1|2∞)

)( |�2|3∞
2

+ O(|�2|2∞)
)

= |�1|3∞|�2|3∞
4

+ O(|�1|2∞|�2|2∞(|�1|∞ + |�2|∞)),

where the O-constants are absolute. Consequently, by (47), for each 1 ≤ i ≤ 4 we have

Ti = |�1|2∞|�2|2∞
4(|�1|2∞ − 1)(|�2|2∞ − 1)

· qx

x
+ O

( |�1|∞ + |�2|∞
|�1|∞|�2|∞ · qx

x

)

+ Oψ

(
|�1|

3
2∞|�2|

3
2∞ · q

x
2 logq(|�1|∞ + |�2|∞)

)
.

By plugging these estimates into (46) and recalling that |�1|∞ = |�2|∞ = qθ , we

obtain

S�1,�2 �ψ

qx−θ

x
+ q

x
2 +3θ θ. (48)

Then, by combining (42) with (43)–(45) and (48), we obtain

Sg(ψ)�ψ qx−θ θ
x
(x + deg g)+ q

x
2 +3θ θ + qx−2θ θ

2

x
(x + deg g)2.
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We now choose

θ := x

8

and conclude that

Sg(ψ)�ψ q
7x
8 (x + deg g)+ q

3x
4 x(x + deg g)2,

justifying (40).

4.2.3 Conclusion

By putting together (38), (39), (41), and by choosing

y(x) := 11x

24

for any arbitrary ε > 0, we obtain that

B(ψ, x)=
∑

m∈A(1)

μA(m)cJm(x)

[Jm : F ]
· qx

x
+ Oψ,F,ε

(
q

23x
24 +xεx3

)
. (49)

4.2.4 Dirichlet density

To determine the Dirichlet density of the set {p ∈Pψ : bp(ψ)= 1}, we make use of the

asymptotic formula (49). In particular, for s> 1 (with s → 1), we have

∑
p∈Pψ

bp(ψ)=1

q−s deg p =
∑
x≥1

q−sxB(ψ, x)

=
∑

m∈A(1)

μA(m)

[Jm : F ]

∑
x≥1

cJm |x

q(1−s)xcJm

x
+ Oψ,F,ε

(∑
x≥1

q(
23
24 +ε−s)x

)

=
∑

m∈A(1)

μA(m)

[Jm : F ]

∑
j≥1

q(1−s) jcJm

j
+ Oψ,F,ε

(
q

23
24 +ε−s

1 − q
23
24 +ε−s

)

= −
∑

m∈A(1)

μA(m)

[Jm : F ]
log(1 − q(1−s)cJm )+ Oψ,F,ε

(
q

23
24 +ε−s

1 − q
23
24 +ε−s

)
.

Upon taking the quotient with − log(1 − q1−s) and the limit s → 1+, we obtain∑
m∈A(1)

μA(m)
[Jm:F ] . We include some details for the limit of the first quotient: with c := cJm
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and upon applying l’Hospital, we obtain

lim
s→1+

log(1 − q(1−s)c)

log(1 − q1−s)
= c lim

s→1+
q(1−s)c(1 − q1−s)

q1−s(1 − q(1−s)c)

= c lim
s→1+

q(c−1)(1−s)

1 + q2(1−s) + q3(1−s) + · · · + q(c−1)(1−s)
= c

c
= 1.

The limit of the second quotient is 0.

4.3 Proof of Part (b) of Theorem 6

With notation (36), we write

B(ψ, x)= #{p ∈Pψ : deg p = x, p ordinary, Eψ,p = A[πp(ψ)]}

+ #{p ∈Pψ : deg p = x, p supersingular, Eψ,p = A[πp(ψ)]}

=:Bo(ψ, x)+ Bss(ψ, x). (50)

We will estimate each of the two terms above separately.

4.3.1 Ordinary primes

Let p ∈Pψ be an ordinary prime for ψ . First of all,

EndF̄ (ψ)⊗A F ⊆ Ēψ,p ⊗A F,

so using, the assumptions that p is ordinary and that EndF̄ (ψ) is a maximal order in K,

we deduce that

Eψ,p �Oψ,p � Ēψ,p � EndF̄ (ψ). (51)

In particular, the discriminant Δ of EndF̄ (ψ) equals Δ(Eψ,p) and so, by (15), there exists

δ ∈ A, independent of p, such that

Δ= δA

and

ap(ψ)
2 − 4up(ψ)p= bp(ψ)

2δ.
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Consequently,

bp(ψ)= 1 ⇔ up(ψ)p=
(

ap(ψ)

2

)2

− δ

4
. (52)

Recalling (8) and using Part (i) of Lemma 12, we deduce that there are at most O(q
x
2 )

possible ap(ψ) ∈ A. Also, there are at most q − 1 possible choices of δ. Thus, by (52),

Bo(ψ, x)� q
x
2 . (53)

4.3.2 Supersingular primes

Let p ∈Pψ be a supersingular prime for ψ . In other words,

ap(ψ)= 0 (54)

(cf. [38, Proposition 4]). By using this in (15), we deduce that −4up(ψ)p= bp(ψ)
2δp(ψ),

which implies bp(ψ)= 1.

Under the assumption EndF̄ (ψ)⊗A F � K, we also have that any supersingu-

lar prime p for ψ is either ramified or inert in K. Indeed, K ⊗F Fp is a subalgebra of

Ēψ,p ⊗A Fp. But if p is a prime of supersingular reduction, then Ēψ,p ⊗A Fp is the division

quaternion algebra over Fp. This implies that K ⊗F Fp is a field, which itself implies that

p does not split in K. Combining this with the Chebotarev Density Theorem for K, we

deduce that

Bss(ψ, x)= cK(x)

2
· qx

x
+ OK(q

x
2 ). (55)

By putting together (50), (53) and (55), and by a similar calculation as in

Section 4.2.4, we complete the proof of Part (b) of Theorem 6.

4.4 Remarks

(i) A natural question to ask is whether the Dirichlet density in Part (a) of Theorem 6 is

positive. This question is related to a good understanding of the constant M(ψ) intro-

duced in Part (iv) of Theorem 15, and, in particular, to an understanding of effective

versions of the Open Image Theorems for Drinfeld modules proved by Pink and Rütsche

[32]. We point out that, unlike the situation for elliptic curves (cf. [5], where any elliptic
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curve over Q with rational 2-torsion gives rise to a zero density of reductions with small

endomorphism rings), there is no immediate obstruction for a Drinfeld module ψ to have

a positive Dirichlet density for {p ∈Pψ : EndFp
(ψ ⊗ Fp)= A[πp(ψ)]}. In [40], Zywina gives

an example of a rank-2 Drinfeld Fq[T ]-module ψ over Fq(T) for which the residual rep-

resentations ρ̄ψ,a are surjective for all a∈ A and for which F̄q ∩ F (ψ [a])= Fq for all a∈ A.

It is easy to see that for this particular ψ the Dirichlet density in question is indeed

nonzero.

(ii) As already emphasized in Corollary 3, the condition bp(ψ)= 1 implies that
ψFp is A-cyclic. The reductions of ψ giving rise to a cyclic A-module have been studied

in several works, for example, [8, 20, 21, 23]. An outcome of Part (b) of Theorem 6 is that,

for any rank 2 Drinfeld module ψ whose endomorphism ring is the integral closure of A

in a quadratic imaginary extension of F , there is a density ≥ 0.5 of primes which give rise

to reductions of ψ with A-cyclic structures. This is to be contrasted with the situation

for elliptic curves (see [7]), where such a result is not true: there exist CM elliptic curves

over Q (in fact, any CM curve with a rational 2-torsion) which have no reductions with

cyclic structures; moreover, for CM elliptic curves over Q with no rational 2-torsion one

cannot always ensure a density of ≥ 0.5 of cyclic reductions.

5 CM-Liftings of Drinfeld Modules

5.1 CM-liftings of abelian varieties

To motivate the discussion and definitions in the setting of Drinfeld modules in

Section 5.2, we first recall what is known about CM-liftings of abelian varieties.

Let B be an abelian variety of dimension g defined over a field K. Following [30,

Definition 1.7], we say that B has sufficiently many complex multiplications (or is CM,

for short) if End0
K(B) := EndK(B)⊗Z Q contains a commutative semi-simple algebra L of

dimension 2g over Q. If B is simple, then L is necessarily a CM field, that is, a totally

imaginary quadratic extension of a totally real field.

Let B0 be an abelian variety over a field k of characteristic p. We say that B is a

CM-lifting of B0 if there exists a normal domain R with fraction field K of characteristic

zero, a ring homomorphism R→ k, and an abelian scheme B over R such that B ⊗R k∼= B0

and B =B ⊗R K is CM.

The earliest result about CM-liftings is a well-known theorem of Deuring.

Theorem 19. Let E0 be an elliptic curve over a finite field k. For any f0 ∈ Endk(E0) gener-

ating an imaginary quadratic field L ⊂ End0
k(E0), there is an elliptic curve E over the ring
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of integers R of a finite extension of Qp equipped with an endomorphism f ∈ EndK(E)

such that (E, f) has special fibre isomorphic to (E0, f0). �

Proof. See Theorem 1.7.4.6 in [4]. �

Next, as part of his proof that Tate’s map from the isogeny classes of abelian

varieties over a finite field to the Galois conjugacy classes of Weil numbers is surjective,

Honda proved the following theorem.

Theorem 20. Given an abelian variety B0 over a finite field k, there exists a finite exten-

sion k⊂ k′ and an isogeny B0 ⊗k k′ → C0 defined over k′ such that C0 has CM-lifting. �

Finally, in the recent monograph [4] the authors show that both the isogeny

and the field extension in the previous theorem are necessary for the existence of CM-

liftings.

Theorem 21.

(a) For any g ≥ 3, there exists an abelian variety over F̄p of dimension g

which does not admit CM-liftings. Hence the isogeny in Honda’s theorem is

necessary.

(b) There exists an abelian variety B0 over a finite field k such that any C0 isoge-

nous to B0 over k does not admit a CM-lifting. Hence the field extension k′/k

in Honda’s theorem is necessary. �

5.2 CM-liftings of Drinfeld modules

As at the beginning of Section 1, let F be the function field of a smooth, projective,

geometrically irreducible curve over Fq. Fix a place ∞ of F , and let A be the subring of

F consisting of functions which are regular away from ∞.

Let R be a discrete valuation ring with maximal ideal m and field of frac-

tions K. Assume K is equipped with an injective homomorphism γ : A→ K, so the

A-characteristic of K is 0. A Drinfeld A-module over R of rank r is an embedding

ψ : A→ R{τ } which is a Drinfeld module over K of rank r, as defined in Section 1, and

such that the composite homomorphism ψ : A→ R{τ } → (R/m){τ } is a Drinfeld module

over R/m, again of rank r; cf. [19, Definition 7.1]. We say that ψ has CM if EndK(ψ)⊗A F

is a field extension L of F of degree r. (Note that L is imaginary.)
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Let k be a finite field with A-characteristic p. Let ψ0 be a Drinfeld A-module over

k. We say that ψ0 has a CM-lifting if there exists a discrete valuation ring R with residue

field k, and a CM Drinfeld module ψ over R such that ψ̄ is isomorphic to ψ0 over k.

Let qn be the cardinality of k. Let ψ0 be a rank-r Drinfeld A-module over k. Denote

E = Endk(ψ0) and D = E ⊗A F . It is clear that π := τn ∈ E . Let F̃ := F (π)⊆ D. The follow-

ing is known about D and F̃ (see [38, Theorem 1]):

• The degree of F̃ over F divides r. Let t := r/[F̃ : F ].

• There is a unique place P of F̃ which is a zero of π and there is a unique place

∞F̃ of F̃ which is a pole of π . Furthermore, P lies over p, and ∞F̃ is the unique

place lying over ∞.

• D is a central division algebra over F̃ of dimension t2 with invariants

invv(D)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/t if v= P,

−1/t if v= ∞F̃ ,

0 otherwise.

By [33, Theorem 7.15], the maximal subfields of D are those which have degree r

over F , and any such field contains F̃ . Let L be a maximal subfield of D. Denote by AL

be the integral closure of A in L and put A= E ∩ L. We say that L is good for ψ0 if the

conductor c of A as an A-order in AL is coprime to p.

Theorem 22. If L is good for ψ0, then the Drinfeld module ψ0 has a CM-lifting ψ such

that EndK(ψ)⊗A F = L. �

Proof. We can consider ψ0 as an elliptic A-module of rank 1 defined over k:

ψ ′
0 :A→ k{τ }.

The restriction of ψ ′
0 to A is the original module ψ0. By [16, Proposition 4.7.19] or [19,

Proposition 3.2], there is a Drinfeld AL-module φ′
0 of rank 1 over k, whose restriction to

A is isogenous to ψ ′
0 over k. Restricting φ′

0 to A we get a Drinfeld A-module φ0 of rank

r. The fact that φ′
0 and ψ ′

0 are isogenous implies that there is an isogeny i : φ0 →ψ0 over

k. Moreover, since by assumption c is coprime to p, we can choose i so that the group-

scheme ker(i) has trivial intersection with φ0[p]; cf. the proof of Proposition 4.7.19 in [16].

Now the deformation theory of Drinfeld modules implies that φ′
0 lifts to a rank-1 Drin-

feld AL-module φ′ over a discrete valuation ring R whose field of fractions has zero A-

characteristic; see [26, Section 3.1]. Restricting φ′ to A we get a rank-r Drinfeld A-module
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φ over K with CM by L, whose reduction is φ0. Since ker(i) is étale, [26, Corollary 2.3 on

p. 42] implies that the kernel of i lifts to an A-invariant submodule H ⊂ φKsep which

is also invariant under Gal(Ksep/K). (Note that H is not necessarily AL-invariant.) By

[16, Proposition 4.7.11], there is an isogeny φ→ψ defined over K whose kernel is H . It is

easy to see that A⊂ EndK(ψ), and the reduction of ψ is ψ0, so ψ is the desired CM-lifting

of ψ0. �

Corollary 23. Any Drinfeld module ψ0 is isogenous over k to some Drinfeld module φ0

having a CM-lifting. �

Proof. This is clear from the proof of Theorem 22. �

Proposition 24. In the following cases any maximal subfield L is good:

(1) ψ0 is supersingular.

(2) r = 2. �

Proof. Note that P does not split in the extension L/F̃ . By Corollary to Theorem 1 in

[38], AP is a maximal Ap order, so the conductor c is coprime to P. The Drinfeld module

ψ0 is supersingular if and only if P is the only place of F̃ over p; see [25, (2.5.8)]. These

two facts imply the first claim. Now assume r = 2. Then either ψ0 is supersingular or F̃

is a separable quadratic extension of F and p = PP̄ splits in F̃ . In the second case L = F̃ ,

and if f(x)= x2 − ax + b = 0 is the minimal polynomial of π over F , then a �∈ p. Note that

f ′(π)= 2π − a= π − π̄ is divisible neither by P nor P̄, so A[π ] is maximal at p; the same

then is true for E =A. �

By the previous proposition, if r = 2, then any L is good. Since any f0 ∈ E , which

is not in A, generates a maximal subfield, we conclude that (ψ0, f0) has a CM-lifting, in

direct analogy with Deuring’s Theorem 19. This proves Theorem 7 in Section 1.
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